DP+容斥原理


  sigh……就差一点……

  四种硬币的数量限制就是四个条件,满足条件1的方案集合为A,满足条件2的方案集合为B……我们要求的就是同时满足四个条件的方案集合$A\bigcap B\bigcap C\bigcap D$的大小。

  全集很好算……一个完全背包>_>$4×10^5$就可以预处理出来……

  然后我sb地去算满足一个条件、两个条件……的方案数去了QAQ根本算不出来啊

  orz了hzwer的题解,其实是算 不满足一个条件、不满足两个条件…的方案数的,因为如果第一种硬币超了,说明用了d[1]+1个第一种硬币,剩下的随意!!!而这个剩下的部分就是 f[rest]!!所以就可以O(1)查询了……sad

  人太弱有些悲伤……

 /**************************************************************
Problem: 1042
User: Tunix
Language: C++
Result: Accepted
Time:40 ms
Memory:2052 kb
****************************************************************/ //BZOJ 1042
#include<vector>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define rep(i,n) for(int i=0;i<n;++i)
#define F(i,j,n) for(int i=j;i<=n;++i)
#define D(i,j,n) for(int i=j;i>=n;--i)
#define pb push_back
using namespace std;
inline int getint(){
int v=,sign=; char ch=getchar();
while(ch<''||ch>''){ if (ch=='-') sign=-; ch=getchar();}
while(ch>=''&&ch<=''){ v=v*+ch-''; ch=getchar();}
return v*sign;
}
const int N=1e5+,INF=~0u>>;
typedef long long LL;
/******************tamplate*********************/
int c[],d[],s,n;
LL ans,f[N];
void dfs(int x,int k,int sum){
if (sum<) return;
if (x==){
if (k&) ans-=f[sum];
else ans+=f[sum];
return;
}
dfs(x+,k+,sum-(d[x]+)*c[x]);
dfs(x+,k,sum);
}
int main(){
#ifndef ONLINE_JUDGE
freopen("1042.in","r",stdin);
freopen("1042.out","w",stdout);
#endif
F(i,,) c[i]=getint(); n=getint();
f[]=;
F(i,,) F(j,c[i],1e5) f[j]+=f[j-c[i]]; F(i,,n){
F(i,,) d[i]=getint(); s=getint();
ans=;
dfs(,,s);
printf("%lld\n",ans);
}
return ;
}

1042: [HAOI2008]硬币购物

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 1282  Solved: 754
[Submit][Status][Discuss]

Description

硬币购物一共有4种硬币。面值分别为c1,c2,c3,c4。某人去商店买东西,去了tot次。每次带di枚ci硬币,买si的价值的东西。请问每次有多少种付款方法。

Input

第一行 c1,c2,c3,c4,tot 下面tot行 d1,d2,d3,d4,s

Output

每次的方法数

Sample Input

1 2 5 10 2
3 2 3 1 10
1000 2 2 2 900

Sample Output

4
27

HINT

数据规模

di,s<=100000

tot<=1000

Source

[Submit][Status][Discuss]

【BZOJ】【1042】【HAOI2008】硬币购物的更多相关文章

  1. Bzoj 1042: [HAOI2008]硬币购物 容斥原理,动态规划,背包dp

    1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1747  Solved: 1015[Submit][Stat ...

  2. bzoj 1042: [HAOI2008]硬币购物 dp+容斥原理

    题目链接 1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1706  Solved: 985[Submit][ ...

  3. BZOJ 1042: [HAOI2008]硬币购物( 背包dp + 容斥原理 )

    先按完全背包做一次dp, dp(x)表示x元的东西有多少种方案, 然后再容斥一下. ---------------------------------------------------------- ...

  4. BZOJ 1042: [HAOI2008]硬币购物 [容斥原理]

    1042: [HAOI2008]硬币购物 题意:4种硬币.面值分别为c1,c2,c3,c4.1000次询问每种硬币di个,凑出\(s\le 10^5\)的方案数 完全背包方案数? 询问太多了 看了题解 ...

  5. BZOJ 1042: [HAOI2008]硬币购物 容斥+背包

    1042: [HAOI2008]硬币购物 Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请 ...

  6. BZOJ 1042 [HAOI2008]硬币购物(完全背包+容斥)

    题意: 4种硬币买价值为V的商品,每种硬币有numi个,问有多少种买法 1000次询问,numi<1e5 思路: 完全背包计算出没有numi限制下的买法, 然后答案为dp[V]-(s1+s2+s ...

  7. [BZOJ 1042] [HAOI2008] 硬币购物 【DP + 容斥】

    题目链接:BZOJ - 1042 题目分析 首先 Orz Hzwer ,代码题解都是看的他的 blog. 这道题首先使用DP预处理,先求出,在不考虑每种硬币个数的限制的情况下,每个钱数有多少种拼凑方案 ...

  8. BZOJ 1042: [HAOI2008]硬币购物 (详解)(背包&容斥原理)

    题面:https://www.cnblogs.com/fu3638/p/6759919.html 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚 ...

  9. BZOJ 1042: [HAOI2008]硬币购物 容斥原理_背包_好题

    Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买s i的价值的东西.请问每次有多少种付款方法. 题解: 十分喜 ...

  10. ●BZOJ 1042 [HAOI2008]硬币购物

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1042 题解: 容斥原理,dp预处理首先跑个无限物品的背包dp求出dp[i]表示在四种物品都有 ...

随机推荐

  1. jQuery类级别插件--返回顶部,底部,去到任何部位

    先引入js:<script type="text/javascript" src="jquery.js" ></script><s ...

  2. HTML5 对于手机页面长按会粘贴复制的禁用 (解决方案)

    解决方案: 直接在CSS 文件中添加下面的代码,就可以实现了在手机端禁止粘贴复制的功能: *{    -webkit-touch-callout:none;  /*系统默认菜单被禁用*/    -we ...

  3. LevelDB系列之SSTable(Sorted Strings Table)文件

    SSTable是Bigtable中至关重要的一块,对于LevelDb来说也是如此,对LevelDb的SSTable实现细节的了解也有助于了解Bigtable中一些实现细节. 本节内容主要讲述SSTab ...

  4. Py Split and Count For "PFW Impact Crusher For Sale South Africa"

    data = 'As we all know, the impact Crusher is fully used in the transportation, energy, construction ...

  5. 更强的微光闪烁效果--第三方开源--Shimmer-android

    Shimmer-android在github上的项目主页是:https://github.com/RomainPiel/Shimmer-android Shimmer-android干脆在Androi ...

  6. 区间 (vijos 1439) 题解

    [问题描述] 现给定n个闭区间[ai,bi],1<=i<=n.这些区间的并可以表示为一些不相交的闭区间的并.你的任务就是在这些表示方式中找出包含最少区间的方案.你的输出应该按照区间的升序排 ...

  7. STL之迭代器

    容器支持的迭代器类型  STL Container  Type of Iterators Supported   vector  random access iterators 元素严格有序(类似数组 ...

  8. ios第三方分享到qq、微信、人人网、微博总结

    我们开发出来的APP通常要通过第三方分享到其他社交平台,如qq.微博微信 等.通过分享可以提高APP的传播效率,增加APP的曝光率,因此也算是APP功能 里的标配了吧.目前常用的第三方分享途径有qq. ...

  9. Oracle表结构转换SqlSERVER表结构 脚本

    在审计工作中,有时需要将Oracle的表结构修改后再SqlSERVER中创建表结构,然后将数据导入到SqlSERVER中,在修改表结构的过程中方法狠多.手工修改,最蠢的方法,或者用工具UE批量修改,还 ...

  10. Android--启动拍照功能并返回结果

    因为没有深入学习拍照这块功能,所以只是简单的调用了一下系统的拍照功能,下面代码: //拍照的方法 private void openTakePhoto(){ /** * 在启动拍照之前最好先判断一下s ...