说明:河内之塔(Towers of Hanoi)是法国人M.Claus(Lucas)于1883年从泰国带至法国的,河内为越战时北越的首都,即现在的胡志明市;1883年法国数学家 Edouard Lucas曾提及这个故事,据说创世纪时Benares有一座波罗教塔,是由三支钻石棒(Pag)所支撑,开始时神在第一根棒上放置64个由上至下依由小至大排列的金盘(Disc),并命令僧侣将所有的金盘从第一根石棒移至第三根石棒,且搬运过程中遵守大盘子在小盘子之下的原则,若每日仅搬一个盘子,则当盘子全数搬运完毕之时,此塔将毁损,而也就是世界末日来临之时。

解法:如果柱子标为ABC,要由A搬至C,在只有一个盘子时,就将它直接搬至C,当有两个盘子,就将B当作辅助柱。如果盘数超过2个,将第三个以下的盘子遮起来,就很简单了,每次处理两个盘子,也就是:A->B、A ->C、B->C这三个步骤,而被遮住的部份,其实就是进入程式的递回处理。事实上,若有n个盘子,则移动完毕所需之次数为2^n - 1,所以当盘数为64时,则所需次数为:264- 1 = 18446744073709551615为5.05390248594782e+16年,也就是约5000世纪,如果对这数字没什幺概念,就假设每秒钟搬一个盘子好了,也要约5850亿年左右。

#include <stdio.h>
void hanoi(int n, char A, char B, char C) {
if(n == 1) {
printf("Move sheet %d from %c to %c\n", n, A, C);
}
else {
hanoi(n-1, A, C, B); //将A上编号为1至n-1的圆盘移到B,C作辅助塔
printf("Move sheet %d from %c to %c\n", n, A, C);
hanoi(n-1, B, A, C); //将B上编号为1至n-1的圆盘移到C,A作辅助塔
}
} int main() {
int n;
printf("请输入盘数:");
scanf("%d", &n);
hanoi(n, 'A', 'B', 'C');
return 0;
}

Hanoi塔问题的更多相关文章

  1. 经典递归算法研究:hanoi塔的理解与实现

    关于hanoi塔的原理以及概念,请Google,访问不了去百度. 主要设计到C中程序设计中递归的实现: 主代码实现如下: void hanoi(int src, int dest, int tmp, ...

  2. (转)Hanoi塔问题分析

    转自:http://shmilyaw-hotmail-com.iteye.com/blog/2077098 简介 关于Hanoi塔问题的分析,在网上的文章都写烂了.之所以打算写这篇文章,更多的是针对这 ...

  3. 栈与递归的实现(Hanoi塔问题等等)

    函数中有直接或间接地调用自身函数的语句,这样的函数称为递归函数.递归函数用 得好,可简化编程工作.但函数自己调用自己,有可能造成死循环.为了避免死循环,要 做到两点: (1) 降阶.递归函数虽然调用自 ...

  4. Hanoi塔问题——递归

    /////////////Hanoi塔问题///////#include<iostream>using namespace std;void hanoi(int i,char A,char ...

  5. 【题解】Hanoi塔问题

    题目描述 有三根柱A,B,C.在柱A上有N块盘片,所有盘片都是大的在下面,小片能放在大片上面.并依次编好序号,现要将A上的N块片移到C柱上,每次只能移动一片,而且在同一根柱子上必须保持上面的盘片比下面 ...

  6. Hanoi塔

    2016-03-19 17:01:35 问题描述: 假设有三个命名为 A B C 的塔座 ,在塔座A上插有n个直径大小不相同,由小到大编号为1 ,2 ,3 ,··· ,n的圆盘,要求将A座上的圆盘移至 ...

  7. 汉诺塔(Hanoi)——小小算法

    传送门: 袁咩咩的小小博客 汉诺(Hanoi)塔源于古印度,是非常著名的智力趣题,大意如下: 勃拉玛是古印度的一个开天辟地的神,其在一个庙宇中留下了三根金刚石的棒,第一 根上面套着64个大小不一的圆形 ...

  8. 用函数递归的方法解决古印度汉诺塔hanoi问题

    问题源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上.并且规 ...

  9. 算法笔记_013:汉诺塔问题(Java递归法和非递归法)

    目录 1 问题描述 2 解决方案  2.1 递归法 2.2 非递归法 1 问题描述 Simulate the movement of the Towers of Hanoi Puzzle; Bonus ...

随机推荐

  1. 看完这些,你就算得上既了解围棋又了解alphago了

    首先,我们要祝贺小李下出第78手的“神之一手”,这一手堪称前无古人后无来者,尤其是结合了阿尔法狗自暴自弃的表现.小李说过他的失败并不是人类的失败,同样,小李的胜利也只是属于他一人的胜利. 然而人类在围 ...

  2. Qt中的键盘事件,以及焦点的设置(比较详细)

    Qt键盘事件属于Qt事件系统,所以事件系统中所有规则对按键事件都有效.下面关注点在按键特有的部分: focus 一个拥有焦点(focus)的QWidget才可以接受键盘事件.有输入焦点的窗口是活动窗口 ...

  3. ActiveMQ简单的HelloWorld实例

    我们使用ActiveMQ为大家实现一种点对点的消息模型. 开发时候,要将apache-activemq-5.12.0-bin.zip解压缩后里面的activemq-all-5.12.0.jar包加入到 ...

  4. (CentOS) 程序安装包管理:yum

    简介: Yum(全称为 Yellow dog Updater, Modified)是一个在Fedora和RedHat以及CentOS中的Shell前端软件包管理器.基于RPM包管理,能够从指定的服务器 ...

  5. Java:网络编程之IP、URL

    java.net  类 InetAddress 此类表示互联网协议 (IP) 地址. 会抛出异常 UnknownHostException   直接已知子类:         Inet4Address ...

  6. python 细枝末节

    1. print  自动换行 看区别 >>> for i in range(4): ... print i ... 0 1 2 3 >>> for i in ran ...

  7. 汉字编码:GB2312, GBK, GB18030, Big5

    前一篇博文:ANSI是什么编码?中有这样一段小故事: 话说计算机是由美国佬搞出来的嘛,他们觉得一个字节(可以表示256个编码)表示英语世界里所有的字母.数字和常用特殊符号已经绰绰有余了(其实ASCII ...

  8. Ubuntu12.04安装YouCompleteMe插件

    以前用的都是ctags+omnicomplete+acp的方式,这次换成clang自解析的方式尝试一把. 自从知道了Vundle,妈妈再也不用担心我麻烦地下插件了 0. 安装必要组件 sudo apt ...

  9. zoj 3329 One Person Game (有环 的 概率dp)

    题目链接 这个题看的别人的思路,自己根本想不出来这种设方程的思路. 题意: 有三个骰子,分别有k1,k2,k3个面. 每次掷骰子,如果三个面分别为a,b,c则分数置0,否则加上三个骰子的分数之和. 当 ...

  10. hibernate lazy=false annotation设置

    工程报错如下: org.hibernate.LazyInitializationException: could not initialize proxy - no Session 解决方法: 在类的 ...