Data manipulation primitives in R and Python
Data manipulation primitives in R and Python
Both R and Python are incredibly good tools to manipulate your data and their integration is becoming increasingly important1. The latest tool for data manipulation in R is Dplyr2 whilst Python relies onPandas3.
In this blog post I'll show you the fundamental primitives to manipulate your dataframes using both libraries highlighting their major advantages and disadvantages.
Theory first
Data Frames are basically tables. Codd, E.F. in 1970 defined Relational algebra4 as the basic the theory to work on relational tables. It defines the following operations:
- Projection (π)
- Selection (σ)
- Rename (ρ)
- Set operators (union, difference, cartesian product)
- Natural join (⋈)
SQL dialects also added the following
- Aggregations
- Group by operations
Why we care? People redefined these basic operations over and over in the last 40 years starting with SQL until today latest query languages. This framework will give us a general language independent perspective on the data manipulation.
Hands on
I will use the nycflights13 dataset used to introduce dplyr5 to present the functions. If you are interested you can download this entire blog post as an IPython notebook. Let's initialise our environment first:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
# Load the R magic command
%load_ext rpy2.ipython
from rpy2.robjects import pandas2ri
# numpy available as np
# pyplot available as ply
%pylab
from pandas import *
Using matplotlib backend: MacOSX
Populating the interactive namespace from numpy and matplotlib
%%R -o flights
#sink(type="output")
sink("/dev/null")
library("dplyr");
library(nycflights13);
flights = pandas2ri.ri2py(flights)
|
Data summary
In both libraries it is possible to quickly print a quick summary of your dataframe. Pandas has an object oriented approach and you can invokehead()
, tail()
and describe()
directly on your dataframe object. R has a procedural approach and its functions take a dataframe as the first input.
Python | R |
---|---|
df.head() |
head(df) |
df.tail() |
tail(df) |
df.describe() |
summary(df) |
1
2
3
4
5
6
7
8
9
10
|
# Python
flights.head();
flights.tail();
flights.describe();
%R head(flights);
%R tail(flights);
%R summary(flights);
|
Selection
In pandas in order to select multiple rows you need to use the []
operator with the element-wise operators like &
and |
. If you don't use the element-wise operators you will get the following error: ValueError: The truth value of a Series is ambiguous
. Another solution is to install the numexpr6 package and use the query()
function.
dplyr
instead provides the filter()
function. Combined with the pipe operator %>%
the code is incredibly readable in my opinion. Notice how repeating the dataframe variable in the boolean expression is not needed in this case.
Python | R |
---|---|
df[bool expr with element-wise operators] |
df %>% filter(bool expr) |
df.query('bool expr') |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
# Python
# Simple filtering
flights[flights.month <= 3];
# Filtering with element-wise operators
flights[(flights.month >= 3) & (flights.month <= 6)];
# with numexpr
flights.query('month >= 3 & month <= 6');
%R flights %>% filter(month >= 3 & month <= 6);
|
Projection
You can use the projection operation to extract one (or more) columns from a dataframe. In Python you pass an array with the columns you are interested in to the DataFrame object. In dplyr the projection function is called select, inspired by SQL.
Python | R |
---|---|
df[['col_1', 'col_2']] |
df %>% select(col_1, col_2) |
1
2
3
4
5
6
|
# Python
flights[['year', 'month']];
%R flights %>% select(month, year);
|
Rename
The rename operation is used to simply rename a column of your dataframe keeping the content intact. In pandas you use the rename7function and you provide a dictionary. In R you use a comma separated list of assignments.
Python | R |
---|---|
df.rename(columns={'col_name': 'col_new_name'}) |
df %>% rename(col_new_name = col_name) |
1
2
3
4
5
6
|
# Python
flights.rename(columns={'month': 'TheMonth'});
%R flights %>% rename(TheMonth = month);
|
Union
The relational algebra uses set union, set difference, and Cartesian product from set theory, with the extra constraint that tables must be "compatible", i.e. they must have the same columns.
You can use the union in Pandas using the concat()
8 operation. You need to take some extra care for indexes though and for that I'll forward you to the docs9.
In R you rely on the bind_rows
10 operator.
Python | R |
---|---|
concat([df_1, df_2]); |
rbind_list(df_1, df_2) |
1
2
3
4
5
6
7
8
9
10
11
12
|
# Python
df_1 = flights.query('dep_time == 518');
df_2 = flights.query('dep_time == 517');
concat([df_1, df_2]);
%%R
sink("/dev/null")
df_1 = filter(flights, dep_time == 517);
df_2 = filter(flights, dep_time == 518);
bind_rows(df_1, df_2);
|
Difference
To the best of my knowledge there is no set difference operator in Python. In order to achieve the result we must rely on the select operator.
In dplyr there is a native operator setdiff
that does exactly what we expect.
Python | R |
---|---|
set_a[~set_a.column.isin(set_b.column)] |
set_a %>% setdiff(set_b) |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
# Python
set_a = flights.query('dep_time == 517 | dep_time == 518');
set_b = flights.query('dep_time == 518 | dep_time == 519');
selection = ~set_a.dep_time.isin(set_b.dep_time);
set_a[selection];
%%R
#sink(type="output")
#sink("/dev/null")
set_a = filter(flights, dep_time == 517 | dep_time == 518);
set_b = filter(flights, dep_time == 518 | dep_time == 519);
set_a %>% setdiff(set_b)
|
Cartesian product
You can use the cartesian product to combine two tables with a disjoint set of columns. In practice this is not a very common operation and as a result both libraries lack a pure cartesian product (in favour of the way more common join
operator).
A simple trick to overcome this limitation is to create a temporary column first, perform the join and finally remove the temporary column. This can be done both in Python and R using the merge()
andfull_join
methods.
Python | R |
---|---|
merge(...) with tmp column |
full_join(...) with tmp column |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
|
# Python
df_1 = DataFrame({
'name': ['Jack', 'Mario', 'Luigi']
});
df_2 = DataFrame({
'surname': ['Rossi', 'Verdi', 'Reacher']
});
df_1['tmp'] = np.nan;
df_2['tmp'] = np.nan;
merge(df_1, df_2, on='tmp').drop('tmp', axis=1);
%%R
#sink(type="output")
sink("/dev/null")
df_1 = data.frame(
name=c('Jack', 'Mario', 'Luigi'),
stringsAsFactors=FALSE)
df_2 = data.frame(
surname=c('Rossi', 'Verdi', 'Reacher'),
stringsAsFactors=FALSE)
df_1$tmp = NA
df_2$tmp = NA
full_join(df_1, df_2, by="tmp") %>% select(-tmp)
|
Natural Join
If you are used to SQL you are definitely aware of what a join operation is. Given two dataframe R and S the result of the natural join is the set of all combinations of tuples in R and S that are equal on their common attribute names.
In Python you can rely on the very powerful merge11 command.
In R Dplyr you can use the full_join12 command.
Python | R |
---|---|
merge(..., on="key", how="outer") |
full_join(..., by="key") |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
|
# Python
df_1 = DataFrame({
'name': ['Jack', 'Mario', 'Luigi'],
'department_id' : [30, 31, 31]
});
df_2 = DataFrame({
'department_name': ['Sales', 'Product', 'Finance'],
'department_id' : [30, 31, 32]
});
merge(df_1, df_2, on="department_id", how="outer");
%%R
#sink(type="output")
sink("/dev/null")
df_1 = data.frame(
name=c('Jack', 'Mario', 'Luigi'),
department_id=c(30, 31, 31),
stringsAsFactors=FALSE)
df_2 = data.frame(
department_name=c('Sales', 'Product', 'Finance'),
department_id=c(30, 31, 32),
stringsAsFactors=FALSE)
full_join(df_1, df_2, by="department_id")
|
Aggregations
An aggregate function is a function that takes the values of a certain column to form a single value of more significant meaning. Typical aggregate functions available in the most common SQL dialects include Average(), Count(), Maximum(), Median(), Minimum(), Mode(), Sum().
Both R and Python dataframes provides methods to extract this information. In this case I would say that Python handle missing values default better, whilst on R we have to provide na.rm = TRUE
.
Python | R |
---|---|
df.<column>.mean() |
summarise(df, test=mean(<column>, na.rm = TRUE)) |
df.<column>.median() |
summarise(df, test=median(<column>, na.rm = TRUE)) |
df.<column>.std() |
summarise(df, test=sd(<column>, na.rm = TRUE)) |
df.<column>.var() |
summarise(df, test=var(<column>, na.rm = TRUE)) |
df.<column>.min() |
summarise(df, test=min(<column>, na.rm = TRUE)) |
df.<column>.max() |
summarise(df, test=max(<column>, na.rm = TRUE)) |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
# Python
flights.dep_time.mean();
flights.dep_time.median();
flights.dep_time.std();
flights.dep_time.var();
flights.dep_time.min();
flights.dep_time.max();
flights.dep_time.mean();
%%R
#sink(type="output")
sink("/dev/null")
summarise(flights, test=mean(dep_time, na.rm = TRUE))
summarise(flights, test=median(dep_time, na.rm = TRUE))
summarise(flights, test=min(dep_time, na.rm = TRUE))
summarise(flights, test=max(dep_time, na.rm = TRUE))
summarise(flights, test=sd(dep_time, na.rm = TRUE))
summarise(flights, test=var(dep_time, na.rm = TRUE))
|
Group by
Aggregations become useful especially when used in conjunction with the group by operator. This way we are able to compute statistics for a number of group subsets with just one command.
Both Python and R provides the function to run a group by.
Python | R |
---|---|
df.groupby('<column>') |
df %>% group_by(<column>) |
1
2
3
4
5
6
7
8
9
10
11
12
13
|
# Python
# For any given day compute the mean of the flights departure time
flights.groupby('day').dep_time.mean();
%%R
#sink(type="output")
sink("/dev/null")
flights %>%
group_by(day) %>%
summarise(dep_time_mean=mean(dep_time, na.rm = TRUE))
|
Conclusion
I think the Pandas and Dplyr paradigms are very different between each other.
Pandas is more focused on object orientation and good defaults. Indexes are a first class entity and as a result some operations that you expect to be simple are instead quite difficult to grasp.
Conversely Dplyr is procedural. I love the pipe operator and manipulating my data feels incredibly smooth. The only sad note is that sometimes functions defaults are not that great. I haven't tested the speed in this blog post but I assume that since indexes are hidden in Dplyr the speed is probably much lower in general.
In conclusion I feel like Dplyr and R are the perfect tool for some early exploration of the data. But if you are serious about the code you are producing you should probably switch to Python to productionise your data analysis.
Let me know your approach in the comments!
References
Data manipulation primitives in R and Python的更多相关文章
- Best packages for data manipulation in R
dplyr and data.table are amazing packages that make data manipulation in R fun. Both packages have t ...
- Data Manipulation with dplyr in R
目录 select The filter and arrange verbs arrange filter Filtering and arranging Mutate The count verb ...
- The dplyr package has been updated with new data manipulation commands for filters, joins and set operations.(转)
dplyr 0.4.0 January 9, 2015 in Uncategorized I’m very pleased to announce that dplyr 0.4.0 is now av ...
- R 调用 python
上一篇说了python使用 rpy2 调用 R,这里介绍R如何调用python.R的强项在于统计方面,尤其是专业的统计分析,统计检验以及作图功能十分强大,但是在通用性方面,就远不如Python了,比如 ...
- R vs Python,数据分析中谁与争锋?
R和Python两者谁更适合数据分析领域?在某些特定情况下谁会更有优势?还是一个天生在各方面都比另一个更好? 当我们想要选择一种编程语言进行数据分析时,相信大多数人都会想到R和Python——但是从这 ...
- 随机森林入门攻略(内含R、Python代码)
随机森林入门攻略(内含R.Python代码) 简介 近年来,随机森林模型在界内的关注度与受欢迎程度有着显著的提升,这多半归功于它可以快速地被应用到几乎任何的数据科学问题中去,从而使人们能够高效快捷地获 ...
- 让R与Python共舞
转载:http://ices01.sinaapp.com/?p=129 R(又称R语言)是一款开源的跨平台的数值统计和数值图形化展现 工具.通俗点说,R是用来做统计和画图的.R拥有自己的脚本 ...
- 决策树ID3原理及R语言python代码实现(西瓜书)
决策树ID3原理及R语言python代码实现(西瓜书) 摘要: 决策树是机器学习中一种非常常见的分类与回归方法,可以认为是if-else结构的规则.分类决策树是由节点和有向边组成的树形结构,节点表示特 ...
- 做量化模型Matlab、R、Python、F#和C++到底选择哪一个?
MATLAB是matrix&laboratory两个词的组合,意为矩阵工厂(矩阵实验室).是由美国mathworks公司发布的主要面对科学计算.可视化以及交互式程序设计的高科技计算环境.它将数 ...
随机推荐
- apache日志文件详解和实用分析命令
apache日志文件每条数据的请意义,以及一些实用日志分析命令. 一.日志分析 如果apache的安装时采用默认的配置,那么在/logs目录下就会生成两个文件,分别是access_log和error ...
- caused by android.system.errnoexception open failed eacces (permission denied)解决方案,安卓6.0(API23)权限问题
在API23+以上,不止要在AndroidManifest.xml里面添加权限 <uses-permission android:name="android.permission.RE ...
- 15)Java &和&&
&,双目运算符:将两个表达式的值按二进制位展开,对应的位(bit)按值进行"与"运算,结果保留在该位上- 比如170&204对应二进制就是 1010101 ...
- ajax使用。
<script> function createAjax(){ var request=false; //window对象中有XMLHttpRequest存在就是非IE,包括(IE7,IE ...
- 并行编程之CountdownEvent的用法
教程:http://blog.gkarch.com/threading/part5.html#the-parallel-class http://www.cnblogs.com/huangxinche ...
- Learning Scrapy笔记(三)- Scrapy基础
摘要:本文介绍了Scrapy的基础爬取流程,也是最重要的部分 Scrapy的爬取流程 Scrapy的爬取流程可以概括为一个方程式:UR2IM,其含义如下图所示 URL:Scrapy的运行就从那个你想要 ...
- .NET String.Format 方法 线程安全问题
碰到这个问题 是在和淘宝做信息交互的时候, 接收别人N年前的代码. 代码逻辑很简单,就是取得信息 数据库查询 响应请求返回结果. 最近淘宝的人反映说 N多账户使用的是一个单号.理论上来说 是应该每次 ...
- r
http://vgoulet.act.ulaval.ca/en/emacs/mac/ mean() 均值 sd()标准差 http://www.walware.de/it/downloads/stat ...
- PAT乙级真题1003. 我要通过!(20)(解题)
“答案正确”是自动判题系统给出的最令人欢喜的回复.本题属于PAT的“答案正确”大派送 —— 只要读入的字符串满足下列条件,系统就输出“答案正确”,否则输出“答案错误”. 得到“答案正确”的条件是: 1 ...
- 10 款提高开发效率的 jQuery/CSS3 组件
前端开发是一项十分繁琐而又耗体力的工作,如何更有效率的开发我们的应用,很多人会选择适当地使用一些jQuery插件.今天就要给大家分享10款可以提高开发效率的jQuery/CSS3组件.部分插件可以下载 ...