题意:

N头牛站成一条线,分别朝向前后两个方向,机器可以使连续K头牛同时改变方向,要求所有牛最终朝向前方,问机器操作次数的最小值及此时的最小K值。

分析:

第一眼看感觉是二分搜索K,再仔细读题,

please help him determine the minimum value of K that minimizes the number of operations required by the machine to make all the cows face forward.

是在最小操作的基础上的最小K值,而操作数可达2N个,肯定不能搜索状态了,可以对K进行枚举,算出每次的操作数,进行比较。

直接暴力的话时间复杂度O(n3)过不了,必须进行优化,尽量扫描一遍就获得操作数。

因为是K个连续的一起转,即第i到i+k−1号牛要一起转,由于这次转动是由第i号牛引起的,就把这次转动体现在a[i]上,令a[i]=1,那么在遍历到第i+k−1号牛之前,i+k−1号牛所转动的次数就是∑i+k−2ia[i],遍历到第i+k−1号牛时,根据求出的转动次数及他本身的方向,判断是否需要转动,依次处理下去。最后判断剩余k−1头牛是否全部面向前方。

代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<map>
using namespace std;
const int maxn = 5005, INF =0x3fffffff;
int s[maxn],a[maxn];
int N;
int judge(int k)
{
memset(a, 0, sizeof(a));
int cnt = 0;
int sum = 0;
for(int i = 0; i < N - k + 1; i++){
if((s[i] + sum) % 2 == 1){
a[i] = 1;
cnt++;
}
sum += a[i];
if(i-k+1>=0) sum -= a[i-k+1];
}
for(int i = N - k +1; i < N; i++){
if((s[i] + sum) % 2 == 1){
return -1;
}
if(i-k+1>=0) sum -= a[i-k+1];
}
return cnt;
}
int main (void)
{
map<char,int>m;
m.insert(make_pair('B',1));
m.insert(make_pair('F',0));
scanf("%d", &N);
char c;
for(int i = 0; i < N;i++){
getchar();
c = getchar();
s[i] = m[c];
}
int res = INF, k;
for(int i = 1; i <= N;i++){
int ans = judge(i);
if(ans == -1) continue;
else if(ans < res){
res = ans;
k = i;
}
}
printf("%d %d\n", k, res);
}

POJ 3276 Face The Right Way【枚举】的更多相关文章

  1. 反转(开关问题) POJ 3276

    POJ 3276 题意:n头牛站成线,有朝前有朝后的的,然后每次可以选择大小为k的区间里的牛全部转向,会有一个最小操作m次使得它们全部面朝前方.问:求最小操作m,再此基础上求k. 题解:1.5000头 ...

  2. POJ.3279 Fliptile (搜索+二进制枚举+开关问题)

    POJ.3279 Fliptile (搜索+二进制枚举+开关问题) 题意分析 题意大概就是给出一个map,由01组成,每次可以选取按其中某一个位置,按此位置之后,此位置及其直接相连(上下左右)的位置( ...

  3. POJ 3276 枚举+差分?

    题意: 思路: 先枚举一下k 贪心:如果当前是B那么就翻 差分一下序列 mod2 就OK了 //By SiriusRen #include <cstdio> #include <cs ...

  4. POJ 3276 (开关问题)

    题目链接: http://poj.org/problem?id=3276 题目大意:有一些牛,头要么朝前要么朝后,现在要求确定一个连续反转牛头的区间K,使得所有牛都朝前,且反转次数m尽可能小. 解题思 ...

  5. Poj(3522),UVa(1395),枚举生成树

    题目链接:http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submis ...

  6. poj 3740 Easy Finding 二进制压缩枚举dfs 与 DLX模板详细解析

    题目链接:http://poj.org/problem?id=3740 题意: 是否从0,1矩阵中选出若干行,使得新的矩阵每一列有且仅有一个1? 原矩阵N*M $ 1<= N <= 16 ...

  7. POJ 1753 Flip Game(二进制枚举)

    题目地址链接:http://poj.org/problem?id=1753 题目大意: 有4*4的正方形,每个格子要么是黑色,要么是白色,当把一个格子的颜色改变(黑->白或者白->黑)时, ...

  8. POJ 3279 - Fliptile - [状压+暴力枚举]

    题目链接:http://poj.org/problem?id=3279 Sample Input 4 4 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 Sample Output 0 ...

  9. POJ 3977:Subset(折半枚举+二分)

    [题目链接] http://poj.org/problem?id=3977 [题目大意] 在n个数(n<36)中选取一些数,使得其和的绝对值最小. [题解] 因为枚举所有数选或者不选,复杂度太高 ...

随机推荐

  1. xshell常用命令大全

    xshell常用命令大全 (1)命令ls——列出文件 ls -la 给出当前目录下所有文件的一个长列表,包括以句点开头的“隐藏”文件 ls a* 列出当前目录下以字母a开头的所有文件 ls -l *. ...

  2. sql语句添加一列标示,然后进行分页。

    ,) , sum(Score) as Score ,Student_NO,Student_Name into #a2_tab from ksy_stu_ScoreInfo GROUP BY Stude ...

  3. Docker安装jenkins(六)

    这里是在linux环境下安装docker之后,在doucer内安装jenkins --------------------docker 安装 jenkins---------------------- ...

  4. ECMAScript6之箭头函数

    2015年6月17日,ECMAScript 6发布正式版本,即ECMAScript 2015. 函数作为js语言中的一等公民.自然Es6中推出的箭头函数(=>)也是备受瞩目的.那我们接下来看下传 ...

  5. 关于TREEVIEW的ONSELECTEDNODECHANGED事件

    MSDN:http://msdn.microsoft.com/zh-cn/library/system.web.ui.webcontrols.treeview.selectednodechanged( ...

  6. ORM-PetaPoco

    PetaPoco有以下特色:--------------------------20170715姜彦 微小,没有依赖项……单个的C#文件可以方便的添加到任何项目中. 工作于严格的没有装饰的Poco类, ...

  7. ES6语法糖集锦

    sublime3安装Es6插件 javascriptNext,然后安装即可 Java​Script​Next - ES6 Syntax()高亮插件 -------------------------- ...

  8. C# 支持多线程

    C# 支持多线程并行执行程序 .一个程序由一个单线程开始,该单线程由CLR和操作系统创建而成,并具有多线程创建额外线程的功能. .创建线程的方法 2.1 通过Thread类来创建线程. ThreadS ...

  9. 查看DNS、IP、Mac等

    A.Win98:winipcfg  B.Win2000以上:Ipconfig/all  C.NSLOOKUP:如查看河北的DNS  C:\\>nslookup  Default Server: ...

  10. MySQL索引的用处

    MySQL索引在MySQL数据库中,可以有效提高查询的效率,尤其是查询数据量非常大时,效果更为明显,往往能使查询速度加快成千上万倍. MySQL索引是很重要的概念,应用的范围非常广.那么,MySQL索 ...