An O(ND) Difference Algorithm and Its Variations (1986)
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.4.6927
The problems of finding a longest common subsequence of two sequences A and B and a shortest edit script for transforming A into B have long been known to be dual problems. In this paper, they are shown to be equivalent to finding a shortest/longest path in an edit graph. Using this perspective, a simple O(ND) time and space algorithm is developed where N is the sum of the lengths of A and B and D is the size of the minimum edit script for A and B. The algorithm performs well when differences are small (sequences are similar) and is consequently fast in typical applications. The algorithm is shown to have O(N +D expected-time performance under a basic stochastic model. A refinement of the algorithm requires only O(N) space, and the use of suffix trees leads to an O(NlgN +D ) time variation.
Myers1986AnONDDifferenceAlgorithm.pdf http://se-pubs.dbs.uni-leipzig.de/files/Myers1986AnONDDifferenceAlgorithm.pdf
An O(ND) Difference Algorithm and Its Variations∗ EUGENE W. MYERS Department of Computer Science, University of Arizona, Tucson, AZ 85721, U.S.A. ABSTRACT The problems of finding a longest common subsequence of two sequences A and B and a shortest edit script for transforming A into B have long been known to be dual problems. In this paper, they are shown to be equivalent to finding a shortest/longest path in an edit graph. Using this perspective, a simple O(ND) time and space algorithm is developed where N is the sum of the lengths of A and B and D is the size of the minimum edit script for A and B. The algorithm performs well when differences are small (sequences are similar) and is consequently fast in typical applications. The algorithm is shown to have O(N + D 2 ) expected-time performance under a basic stochastic model. A refinement of the algorithm requires only O(N) space, and the use of suffix trees leads to an O(NlgN + D 2 ) time variation.
An O(ND) Difference Algorithm and Its Variations (1986)的更多相关文章
- Falcon Genome Assembly Tool Kit Manual
Falcon Falcon: a set of tools for fast aligning long reads for consensus and assembly The Falcon too ...
- 动态规划处理diff算法 Myers Diff (正向)
Eugene W. Myers 在他1986年发表于"Algorithmica"的论文"An O(ND) Difference Algorithm and Its Var ...
- 【原创】Google的文本内容对比代码
/* * Diff Match and Patch * * Copyright 2006 Google Inc. * http://code.google.com/p/google-diff-matc ...
- Myers差分算法的理解、实现、可视化
作者:Oto_G QQ: 421739728 目录 简介 基础 差异的描述 好的差异比较 算法介绍 名词解释 两个定理 绘制编辑图 感谢 简介 本文章对Myers差分算法(Myers Diff Alg ...
- Android DiffUtil
Android 的recyclerview-v7:24.2.0 发布后多了个DiffUtil工具类,这个工具类能够大大解放了Android开发者的一个苦恼:RecyclerView局部刷新和重新刷新时 ...
- linux timing profile
double getUnixTime(void) { struct timespec tv; ) ; return (((double) tv.tv_sec) + (double) (tv.tv_ns ...
- 【翻译】理解 LSTM 及其图示
目录 理解 LSTM 及其图示 本文翻译自 Shi Yan 的博文 Understanding LSTM and its diagrams,原文阐释了作者对 Christopher Olah 博文 U ...
- Leetcode 446.等差数列划分II 子序列
等差数列划分II 子序列 如果一个数列至少有三个元素,并且任意两个相邻元素之差相同,则称该数列为等差数列. 例如,以下数列为等差数列: 1, 3, 5, 7, 9 7, 7, 7, 7 3, -1, ...
- Code Project精彩系列(转)
Code Project精彩系列(转) Code Project精彩系列(转) Applications Crafting a C# forms Editor From scratch htt ...
随机推荐
- 虚拟机安装centos6.5
最近想搞一下代码覆盖率的jacoco,需要在linux环境下部署一套jenkins.故需要装一个centos的虚拟机. 一.安装虚拟机. 下载后安装一个虚拟机,我选择的是VMware虚拟机 二.安装c ...
- POJ 1502 MPI Maelstrom【floyd】
题目大意:求点1到所有点最短路径的最大值 思路:水题,单源最短路,网上解题清一色dijkstra,但是点数小于100显然floyd更简洁嘛 #include<cstdio> #includ ...
- BZOJ 1191: [HNOI2006]超级英雄Hero【二分图匹配】
裸的匹配题,一眼就能看出来二分图的模型,是某个经典题的改编.貌似某本图论书上讲过的,有N个人以及M个职位,每个职位只能提供给一个人,而每个人由于能力有限只能胜任有限个职位,问是否有办法使得每个人都有工 ...
- 【ztree】zTree取消树节点选中的背景色
点击树节点的时候是ztree给树加了个class: curSelectedNode 所以最简单的清除树节点的背景色的方法是移除其有背景色的class: $(".curSelectedN ...
- 树莓派用gobot测试舵机的使用
package main import ( "gobot.io/x/gobot" "gobot.io/x/gobot/drivers/gpio" "g ...
- (9)C#连mysql
1官网下载 dll 2. using MySql.Data.MySqlClient; 3. <add key="con_MES" value="server=192 ...
- 洛谷——P2298 Mzc和男家丁的游戏
P2298 Mzc和男家丁的游戏 题目背景 mzc与djn的第二弹. 题目描述 mzc家很有钱(开玩笑),他家有n个男家丁(做过上一弹的都知道).他把她们召集在了一起,他们决定玩捉迷藏.现在mzc要来 ...
- springboot jetty替换tomcat
<dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring- ...
- [转] oracle里long类型的总结
1.LONG 数据类型中存储的是可变长字符串,最大长度限制是2GB. 2.对于超出一定长度的文本,基本只能用LONG类型来存储,数据字典中很多对象的定义就是用LONG来存储的.1.LONG 数据类型中 ...
- reason: '*** setObjectForKey: object cannot be nil (key: 1)'-crash!
[self.imageDownloadsInProgress setObject:iconDownloader forKey:[NSNumber numberWithInteger:tag]]; 字典 ...