SPOJ:Collecting Candies(不错的DP)
Jonathan Irvin Gunawan is a very handsome living person. You have to admit it to live in this world.
To become more handsome, Jonathan the Handsome have to collect candies (no relation, indeed). In front of him, there are N candies with different level of sweetness. Jonathan will collect the candies one by one. Jonathan can collect any number of candies, but he must collect the candy in the increasing order of level of sweetness (no two candies will have the same level of sweetness).
Every candy has their own color, which will be represented by a single integer between 0 and 109 inclusive.
If Jonathan collects the first candy, or a candy that has different color with the previous candy he take, he will get 1 point.
If Jonathan collects the candy that has the same color with the previous candy, he will get a combo. Combo-x means that he has collected x candies of the same color consecutively. In other words, if he collect a candy and get combo-(x-1) and he collect a candy with the same color again, he will get combo-(x). And then if he collects a candy with different color, the combo will vanish and back to combo- 1.
(Note : previous candy means the last candy he take)
Every time he get combo-x, he will get x points. Jonathan wants to count how many maximum total points he can get. You are a fan of Jonathan the Handsome have to help him.
Input
The first line consists of a single integer T, indicating the number of testcases.
For every testcase, the first line consists of a single integer N (1 ≤ N ≤ 1000).
The next line consists of N integers, representing the color of the candy given in the increasing level of sweetness, separated by a single space.
Output
For every case, output a single integer consist of the maximum total points Jonathan can get.
Example
Input:
2
4
1 1 2 1
4
1 2 3 1
Output:
6
4
Explanation
题意:N个数,取其子数列,使得总得分最高。得分定义如下:
对于某一个x
若前面有连续的c个x,则得分为c + 1
e.g.我选择下面这些数。
1 2 1 1 3 3 3 3 2 2 1 (取到的数列)
1 1 1 2 1 2 3 4 1 2 1 (得分分值)
思路:DP,先离散化。
状态F[i, j] ,i ——取到的最后一个数为i (i是离散化化后的数字),j ——前面有连续j个i ,F[i, j] ——这种情况下的最大得分
对于当前的数now
F[now, j + 1] = F[now, j] + j (1’)
F[now, 1] = max{F[i, j]} + 1 (i != now) (2’)
(感悟:平时的DP,即便是二维的DP,其状态都是一维的。所以想到还是有点难想到。读者有兴趣可以自己想试着想一下。
#include<bits/stdc++.h>
using namespace std;
const int maxn=;
int a[maxn],b[maxn],f[maxn][maxn],cnt,ans;
int main()
{
int T,N,pos,i,j;
scanf("%d",&T);
while(T--){
ans=; scanf("%d",&N);
for(i=;i<=N;i++) scanf("%d",&a[i]),b[i]=a[i];
sort(b+,b+N+);
cnt=unique(b+,b+N+)-(b+);
memset(f,,sizeof(f));
for(i=;i<=N;i++){
pos=lower_bound(b+,b+cnt+,a[i])-b;
for(j=i;j>=;j--) if(f[pos][j-]) f[pos][j]=max(f[pos][j],f[pos][j-]+j);
f[pos][]=ans+;
for(j=;j<=i;j++) ans=max(ans,f[pos][j]);
}
printf("%d\n",ans);
}
return ;
}
SPOJ:Collecting Candies(不错的DP)的更多相关文章
- SPOJ:Harbinger vs Sciencepal(分配问题&不错的DP&bitset优化)
Rainbow 6 is a very popular game in colleges. There are 2 teams, each having some members and the 2 ...
- spoj 1812 LCS2(SAM+DP)
[题目链接] http://www.spoj.com/problems/LCS2/en/ [题意] 求若干个串的最长公共子串. [思路] SAM+DP 先拿个串建个SAM,然后用后面的串匹配,每次将所 ...
- poj2096 Collecting Bugs(概率dp)
Collecting Bugs Time Limit: 10000MS Memory Limit: 64000K Total Submissions: 1792 Accepted: 832 C ...
- poj 2096 Collecting Bugs(期望 dp 概率 推导 分类讨论)
Description Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other ...
- Collecting Bugs poj2096 概率DP
Collecting Bugs Time Limit: 10000MS Me ...
- SPOJ BALNUM - Balanced Numbers - [数位DP][状态压缩]
题目链接:http://www.spoj.com/problems/BALNUM/en/ Time limit: 0.123s Source limit: 50000B Memory limit: 1 ...
- poj 2096 Collecting Bugs 【概率DP】【逆向递推求期望】
Collecting Bugs Time Limit: 10000MS Memory Limit: 64000K Total Submissions: 3523 Accepted: 1740 ...
- 【POJ 2096】Collecting Bugs 概率期望dp
题意 有s个系统,n种bug,小明每天找出一个bug,可能是任意一个系统的,可能是任意一种bug,即是某一系统的bug概率是1/s,是某一种bug概率是1/n. 求他找到s个系统的bug,n种bug, ...
- SPOJ 1435 Vertex Cover 树形DP
i 表示节点 i ,j=0表示不选择其父节点,j=1表示选择其父节点.f 为其父节点. 取 每个节点选择/不选择 两者中较小的那个. 一组数据: 151 21 31 41 1010 910 1112 ...
随机推荐
- asp.net开发的调试方法集合
调试是写代码一共非常重要的步骤,掌握好调试的技巧对于编程有事半功倍的效果,下面是我总结的菜鸟用方法 1.关于HTML和JS的调试 JS曾经是我最讨厌的错误,因为大多数错误VS不报错,这是因为js是解释 ...
- POJ 2125 最小点权覆盖集(输出方案)
题意:给一个图(有自回路,重边),要去掉所有边,规则:对某个点,可以有2种操作:去掉进入该点 的所有边,也可以去掉出该点所有边,(第一种代价为w+,第二种代价为w-).求最小代价去除所有边. 己思:点 ...
- HDu1241 DFS搜索
#include<iostream> #include<cstring> using namespace std; int a[105][105]; int d[8][2]={ ...
- itext A4纸张横向创建PDF
import java.awt.Color;import java.io.FileOutputStream;import java.io.IOException; import com.lowagie ...
- js react 全选和反选
onCheckAll = (data) => { var CheckBox = document.getElementsByName(data); for(let i=0;i<CheckB ...
- Spring整合SSM的配置文件详解
在整合三大框架SSM , 即 Spring 和 SpingMVC和Mybatis的时候,搭建项目最初需要先配置好配置文件. 有人在刚开始学习框架的时候会纠结项目搭建的顺序,因为频繁的报错提示是会很影响 ...
- Spring的IoC容器-Spring BeanFactory容器
虽然这个方法已经在3.1之后已经弃用了,但是可以了解一下. 在Spring中,有大量对BeanFactory接口的实现.其中,最常被使用的是XmlBeanFactory类.这个容器从一个XML文件中读 ...
- 关于linter
各类代码都有规则格式检查工具,称之为linter 比如:csslint/jslint/eslint/pylint sumlime提供了一个linter的框架SublimeLinter,在里面可以使用各 ...
- 操作系统学习(三)-- CPU调度
操作系统之进程与线程 L14 CPU调度策略 如何设计调度算法? 调度关键在:折中和综合 IO约束型的任务一般是前台任务,和用户交互:CPU约束型关注周转时间 进程切换过程需要系统内耗,切换时间长则系 ...
- 使用 Unicode 编码
面向公共语言执行库的应用程序使用编码将字符表示形式从本机字符方案(Unicode)映射为其它方案. 应用程序使用解码将字符从非本机方案(非 Unicode)映射为本机方案. System.Text 命 ...