# 解题思路

这题不难,但是原谅我一开始的傻逼想法,一会儿再给大家透露透露。

先说怎么做这题。

显然对于 $0$ 和 $1$ 来说,异或无非也就只有两种变化

  • 异或了奇数次,$0$ 就会变成 $1$,$1$ 就会变成 $0$。
  • 异或了偶数次,$0$ 和 $1$ 都不变。

那只需要在下传标记的时候下传修改了几次就可以。

好,下面说说我那傻逼的操作。我在下传标记的时候没有给子节点的 sum 进行异或,而是只下传了标记,并且在回溯的时候没有更新父节点的 sum 值。

然后我成功的没过样例,然鹅这并不傻逼,改过来就行了吗,对吧,但是,傻逼的来了,我改的时候没有按照上面的来改,而是在进行更新时,沿途将节点打一个flag标记,假装这一段区间需要更改。

哈哈哈哈哈,然后我成功的获得了 T 四个点的好成绩。

什么鬼,我居然忘记更新父节点,果然还是我太菜了。

我决定还是把这个代码放上吧。

# 附上代码

放上我的傻逼错误代码

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
int n, m;
const int maxn = 2e5+;
struct node {int l, r, sum, t, tag, flag;}tree[maxn << ];
struct Tree {
#define Lson (k << 1)
#define Rson ((k << 1) | 1)
template <typename T> inline void read(T &x) {
x = ; T f = ; char c = getchar();
while (c < '' || c > '') {if(c == '-') f = -; c = getchar();}
while (c <= '' && c >= '') {x = x* + c-''; c = getchar();}
x *= f;
}
void build(int k, int ll, int rr) {
tree[k].l = ll, tree[k].r = rr;
tree[k].flag = tree[k].t = ;
if(tree[k].l == tree[k].r) {
scanf("%1d", &tree[k].sum);
return ;
}
int mid = (tree[k].l + tree[k].r) >> ;
build(Lson, tree[k].l, mid);
build(Rson, mid+, tree[k].r);
tree[k].sum = tree[Lson].sum + tree[Rson].sum;
}
void push_down(int k) {
tree[Lson].t += tree[k].tag;
tree[Rson].t += tree[k].tag;
tree[Lson].tag += tree[k].tag;
tree[Rson].tag += tree[k].tag;
tree[k].tag = ;
}
void update(int k, int L, int R) {
if(tree[k].l >= L && tree[k].r <= R) {
tree[k].t ++;
tree[k].tag ++;
return;
}
tree[k].flag = ;
if(tree[k].tag) push_down(k);
int mid = (tree[k].l + tree[k].r) >> ;
if(L <= mid) update(Lson, L, R);
if(R > mid) update(Rson, L, R);
}
int query(int k, int L, int R) {
int ans = ;
if(tree[k].l >= L && tree[k].r <= R && tree[k].flag == ) {
if(tree[k].t % == ) return (tree[k].r-tree[k].l+)-tree[k].sum;
else return tree[k].sum;
}
if(tree[k].tag) push_down(k);
int mid = (tree[k].l + tree[k].r) >> ;
if(L <= mid) ans += query(Lson, L, R);
if(R > mid) ans += query(Rson, L, R);
return ans;
}
Tree () {
read(n), read(m);
build(, , n);
int opt, l, r;
for(int i=; i<=m; i++) {
read(opt), read(l), read(r);
if(opt == ) update(, l, r);
else printf("%d\n", query(, l, r));
}
}
}T;
int main() {return ;}

好,我们再来看看正确的代码

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
int n, m;
const int maxn = 2e5+;
struct node {int l, r, sum, t, tag, flag;}tree[maxn << ];
struct Tree {
#define Lson (k << 1)
#define Rson ((k << 1) | 1)
template <typename T> inline void read(T &x) {
x = ; T f = ; char c = getchar();
while (c < '' || c > '') {if(c == '-') f = -; c = getchar();}
while (c <= '' && c >= '') {x = x* + c-''; c = getchar();}
x *= f;
}
void build(int k, int ll, int rr) {
tree[k].l = ll, tree[k].r = rr;
tree[k].flag = tree[k].t = ;
if(tree[k].l == tree[k].r) {
scanf("%1d", &tree[k].sum);
return ;
}
int mid = (tree[k].l + tree[k].r) >> ;
build(Lson, tree[k].l, mid);
build(Rson, mid+, tree[k].r);
tree[k].sum = tree[Lson].sum + tree[Rson].sum;
}
void push_down(int k) {
if(tree[k].tag % == )
tree[Lson].sum = (tree[Lson].r-tree[Lson].l+)-tree[Lson].sum,
tree[Rson].sum = (tree[Rson].r-tree[Rson].l+)-tree[Rson].sum;
tree[Lson].tag += tree[k].tag;
tree[Rson].tag += tree[k].tag;
tree[k].tag = ;
}
void update(int k, int L, int R) {
if(tree[k].l >= L && tree[k].r <= R) {
tree[k].tag ++;
tree[k].sum = (tree[k].r-tree[k].l+)-tree[k].sum;
return;
}
if(tree[k].tag) push_down(k);
int mid = (tree[k].l + tree[k].r) >> ;
if(L <= mid) update(Lson, L, R);
if(R > mid) update(Rson, L, R);
tree[k].sum = tree[Lson].sum + tree[Rson].sum;
}
int query(int k, int L, int R) {
int ans = ;
if(tree[k].l >= L && tree[k].r <= R)
return tree[k].sum;
if(tree[k].tag) push_down(k);
int mid = (tree[k].l + tree[k].r) >> ;
if(L <= mid) ans += query(Lson, L, R);
if(R > mid) ans += query(Rson, L, R);
return ans;
}
Tree () {
read(n), read(m);
build(, , n);
int opt, l, r;
for(int i=; i<=m; i++) {
read(opt), read(l), read(r);
if(opt == ) update(, l, r);
else printf("%d\n", query(, l, r));
}
}
}T;
int main() {return ;}

「 Luogu P2574 」 XOR的艺术——线段树的更多相关文章

  1. luogu P2574 XOR的艺术 (线段树)

    luogu P2574 XOR的艺术 (线段树) 算是比较简单的线段树. 当区间修改时.\(1 xor 1 = 0,0 xor 1 = 1\)所以就是区间元素个数减去以前的\(1\)的个数就是现在\( ...

  2. 洛谷 P2574 XOR的艺术(线段树 区间异或 区间求和)

    To 洛谷.2574 XOR的艺术 题目描述 AKN觉得第一题太水了,不屑于写第一题,所以他又玩起了新的游戏.在游戏中,他发现,这个游戏的伤害计算有一个规律,规律如下 1. 拥有一个伤害串为长度为n的 ...

  3. LOJ 2991 「THUSC 2016」补退选——trie+线段树合并或vector

    题目:https://loj.ac/problem/2291 想了线段树合并的做法.就是用线段树维护 trie 的每个点在各种时间的操作. 然后线段树合并一番,线段树维护前缀最大值,就是维护最大子段和 ...

  4. 【LOJ6620】「THUPC 2019」不等式 / inequality(线段树)

    点此看题面 大致题意: 给你两个长度为\(n\)的数组\(a_i\)和\(b_i\),定义\(f_k(x)=\sum_{i=1}^k|a_ix+b_i|\),对于\(k=1\sim n\)的每个\(f ...

  5. 【LOJ】#3109. 「TJOI2019」甲苯先生的线段树

    LOJ#3109. 「TJOI2019」甲苯先生的线段树 发现如果枚举路径两边的长度的话,如果根节点的值是$x$,左边走了$l$,右边走了$r$ 肯定答案会是$(2^{l + 1} + 2^{r + ...

  6. 【洛谷P2574】XOR的艺术

    XOR的艺术 题目链接 用线段树维护sum, 修改时 tag[p]^=1; sum=r-l+1-sum; 详见代码 #include<iostream> #include<cstdi ...

  7. 「Luogu 3792」由乃与大母神原型和偶像崇拜

    更好的阅读体验 Portal Portal1: Luogu Description 给你一个序列\(a\) 每次两个操作: 修改\(x\)位置的值为\(y\): 查询区间\([l, r]\)是否可以重 ...

  8. loj#2312. 「HAOI2017」八纵八横(线性基 线段树分治)

    题意 题目链接 Sol 线性基+线段树分治板子题.. 调起来有点自闭.. #include<bits/stdc++.h> #define fi first #define se secon ...

  9. 「POI2011 R2 Day2」Tree Rotations【线段树合并】

    题目链接 [BZOJ] [洛谷] [LOJ] 题解 由于是前序遍历,那么讨论一棵树上的逆序对的情况. 两个节点都在左子树上 两个节点都在右子树上 两个节点分别在不同的子树上. 前两种情况其实也可以归结 ...

随机推荐

  1. E20180502-hm

    inject vt. (给…)注射(药物等) ; (给…)注射(液体) ; (给…) 添加; (给…)投入(资金) ; reduce  vt. 减少; 缩小; 使还原; 使变弱;       vi. ...

  2. python __builtins__ int类 (36)

    36.'int', 用于将一个字符串或数字转换为整型 class int(object) | int(x=0) -> integer | int(x, base=10) -> intege ...

  3. Firefox下载安装fireBug提示下载出错的解决方案

    火狐官方扩展中心在国外,国内可能访问某一节点出现了问题.所以可能扩展无法安装,并且扩展更新可能出现问题,导致启动检查扩展更新过慢影响启动.我们可以通过修改系统hosts文件加速访问.修改hosts文件 ...

  4. Robotframework自动化系列:筛选结果数量统计

    Robotframework自动化系统:筛选结果数量统计 上一个节点已经可以随机选中某一个下拉框的值,我们在使用evaluate随机数的时候需要计算下拉选项总数,这时候我们是手工计算输入的:这时候如果 ...

  5. 力荐!35 个最好用的 Vue 开源库!

    无论是开发新手还是经验丰富的老手,我们都喜欢开源软件包.对于开发者来说,如果没有这些开源软件包,很难想象我们的生活会变得多么疲惫不堪,而且靠咖啡度日也会成为家常便饭.所幸的是,随着 Vue.js 和 ...

  6. 转 sql 查出一张表中重复的所有记录数据

    select * from DB_PATCH awhere lower(a.db_name) in (select lower(db_name) from DB_PATCH group by lowe ...

  7. Suricata里的规则与Snort区别之处

    不多说,直接上干货! 见官网 https://suricata.readthedocs.io/en/latest/rules/differences-from-snort.html

  8. PHP 讓 json_encode() 指定回傳格式

    PHP 回傳 JSON 很方便, 只要將資料經過 json_encode() 就解決了. 不過因為 PHP 自動轉換型別, 造成很多資料都習慣存成字串, 希望在輸出 JSON 的時候, 數字部份可以輸 ...

  9. Jenkins视图使用--添加删除视图

    job建立的特别多的时候,我们可能不太容易找到自己的某个job,这时,我们就可以在Jenkins中建立视图.job的视图类似于我们电脑上的文件夹.可以通过一些过滤规则,将已经建好的job过滤到视图中, ...

  10. WPF日常需要使用的操作

    窗体如何居中弹出 在窗体上添加属性  WindowStartupLocation="CenterScreen" 窗体如何隐藏掉windows边框 添加属性WindowStyle=& ...