BZOJ_5369_[Pkusc2018]最大前缀和_状压DP

Description

小C是一个算法竞赛爱好者,有一天小C遇到了一个非常难的问题:求一个序列的最大子段和。
但是小C并不会做这个题,于是小C决定把序列随机打乱,然后取序列的最大前缀和作为答案。
小C是一个非常有自知之明的人,他知道自己的算法完全不对,所以并不关心正确率,他只关心求出的解的期望值,
现在请你帮他解决这个问题,由于答案可能非常复杂,所以你只需要输出答案乘上n!后对998244353取模的值,显然这是个整数。
注:最大前缀和的定义:i∈[1,n],Sigma(aj)的最大值,其中1<=j<=i

Input

第一行一个正整数nnn,表示序列长度。
第二行n个数,表示原序列a[1..n],第i个数表示a[i]。
1≤n≤20,Sigma(|Ai|)<=10^9,其中1<=i<=N

Output

输出一个非负整数,表示答案。

Sample Input

2
-1 2

Sample Output

3

设f[i]表示选择的数的状态为i,有多少个排列满足全选是最大的前缀和。
设sum[i]表示选择的数的状态为i的和。
设g[i]表示选择的数的状态为i,有多少个排列满足任意前缀和都小于等于0。
那么答案=$\sum sum[i]*f[i]*g[mask-i]$。
考虑由f[i]推出f[i|(1<<j-1)]。相当于在序列前面加上一个数,保证所有前缀都大于0,这个数就可以加进去。
由g[i]推出g[i|(1<<j-1)],相当于在后面加上一个数使得总和仍小于等于0。
DP即可。
 
代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define mod 998244353
typedef long long ll;
int a[22],n;
ll sum[1<<20],f[1<<20],g[1<<20];
void dfs(int dep,int sta,ll s) {
if(dep==n) {sum[sta]=s; return ;}
dfs(dep+1,sta|(1<<dep),s+a[dep+1]);
dfs(dep+1,sta,s);
}
int main() {
scanf("%d",&n);
int i,mask=(1<<n)-1,j;
for(i=1;i<=n;i++) scanf("%d",&a[i]),f[1<<(i-1)]=1;
dfs(0,0,0); f[0]=g[0]=1;
for(i=0;i<=mask;i++) {
for(j=1;j<=n;j++) {
if(!(i&(1<<(j-1)))) {
if(sum[i]>0) f[i|(1<<(j-1))]=(f[i|(1<<(j-1))]+f[i])%mod;
if(sum[i]+a[j]<=0) g[i|(1<<(j-1))]=(g[i|(1<<(j-1))]+g[i])%mod;
}
}
}
ll ans=0;
for(i=0;i<=mask;i++) ans=(ans+sum[i]*f[i]%mod*g[mask-i]%mod+mod)%mod;
printf("%lld\n",ans);
}

BZOJ_5369_[Pkusc2018]最大前缀和_状压DP的更多相关文章

  1. 【洛谷5369】[PKUSC2018] 最大前缀和(状压DP)

    点此看题面 大致题意: 对于一个序列,求全排列下最大前缀和之和. 状压\(DP\) 考虑如果单纯按照题目中对于最大前缀和的定义,则一个序列它的最大前缀和是不唯一的. 为了方便统计,我们姑且规定,如果一 ...

  2. LOJ6433 [PKUSC2018] 最大前缀和 【状压DP】

    题目分析: 容易想到若集合$S$为前缀时,$S$外的所有元素的排列的前缀是小于$0$的,DP可以做到,令排列前缀个数小于0的是g[S]. 令f[S]表示$S$是前缀,转移可以通过在前面插入元素完成. ...

  3. [PKUSC2018]最大前缀和(状压DP)

    题目大意:求给定的 $n$ 个数的所有排列的最大前缀和(不能为空)之和对 $10^9+7$ 取模的值. $1\le n\le 20,1\le\sum|a_i|\le 10^9$. 神级DP.杂题选讲的 ...

  4. [LOJ6433][PKUSC2018]最大前缀和:状压DP

    分析 我们让每个数列在第一个取到最大前缀和的位置被统计到. 假设一个数列在\(pos\)处第一次取到最大前缀和,分析性质,有: 下标在\([1,pos]\)之间的数形成的数列的每个后缀和(不包括整个数 ...

  5. BZOJ_1076_[SCOI2008]奖励关_状压DP

    BZOJ_1076_[SCOI2008]奖励关_状压DP 题意: 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物, 每次你都可以选择吃或者不吃(必须在抛 ...

  6. BZOJ_2064_分裂_状压DP

    BZOJ_2064_分裂_状压DP Description 背景: 和久必分,分久必和... 题目描述: 中国历史上上分分和和次数非常多..通读中国历史的WJMZBMR表示毫无压力. 同时经常搞OI的 ...

  7. BZOJ_3049_[Usaco2013 Jan]Island Travels _状压DP+BFS

    BZOJ_3049_[Usaco2013 Jan]Island Travels _状压DP+BFS Description Farmer John has taken the cows to a va ...

  8. 「PKUSC2018」最大前缀和(状压dp)

    前言 考试被\(hyj\)吊着打... Solution 考虑一下如果前缀和如果在某一个位置的后面的任意一个前缀和都<=0,肯定这就是最大的. 然后这样子就考虑左右两边的状压dp,然后就好了. ...

  9. Loj 6433. 「PKUSC2018」最大前缀和 (状压dp)

    题面 Loj 题解 感觉挺难的啊- 状压\(dp\) 首先,有一个性质 对于一个序列的最大前缀和\(\sum_{i=1}^{p} A[i]\) 显然对于每个\(\sum_{i=p+1}^{x}A[i] ...

随机推荐

  1. bzoj 1702 贪心,前缀和

    [Usaco2007 Mar]Gold Balanced Lineup 平衡的队列 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 807  Solved: ...

  2. spring几种依赖注入方式以及ref-local/bean,factory-bean,factory-method区别联系

    平常的java开发中,程序员在某个类中需要依赖其它类的方法,则通常是new一个依赖类再调用类实例的方法,这种开发存在的问题是new的类实例不好统一管理,spring提出了依赖注入的思想,即依赖类不由程 ...

  3. Android菜单

    Android菜单概述 菜单是Activity的一个重要组成部分,它为用户操作提供了快捷的途径.Android提供了一个简单的框架来向程序中添加标准菜单 . 一.创建一个菜单资源 你需要在一个XML ...

  4. P1427 小鱼的数字游戏 洛谷

    https://www.luogu.org/problem/show?pid=1427 题目描述 小鱼最近被要求参加一个数字游戏,要求它把看到的一串数字(长度不一定,以0结束,最多不超过100个,数字 ...

  5. Spring Boot修改Thymeleaf版本(从Thymeleaf2.0到3.0)

    Spring Boot默认选择的Thymeleaf是2.0版本的,那么如果我们就想要使用3.0版本或者说指定版本呢,那么怎么操作呢?在这里要说明下 3.0的配置在spring boot 1.4.0+才 ...

  6. MySQLWorkbench里的稀奇事之timestamp的非空默认值

    在创建表时,某字段为非空时间戳,timestamp not null 问题来了,使用workbench建表时,如果值非空,是需要有一个默认值的,不然会报错. 那么,如果是更新时自动填充可以使用DEFA ...

  7. Java重写equals方法和hashCode方法

    package com.ddy; public class User {     private Integer id;     private String name;     private St ...

  8. sql server2008 R2 各个版本的区别与选择

    目前已知的SQL Server 2008 R2的版本有: 企业版.标准版.工作组版.Web版.开发者版.Express版.Compact 3.5版. 这个次序也是各个版本功能的强大程度从高到低的一个排 ...

  9. eclipse中maven插件上传项目jar包到私服

    我们知道,每一个公司都会有自己的工具包或公共包.这样的包就能够上传到公司的maven私服,就不用每一个人都去同步开发包了. 那么,怎么把本地项目打包并公布到私服呢?依照例如以下步骤就能够轻松完毕. 1 ...

  10. Deepin-快捷方式设置

    Linux无非就是命令命令命令,而不是点点点,下面介绍快捷方式 然后点击 最后找到快捷方式(鼠标滚轮下滑) 快捷方式自个看着修改