bzoj 4589: Hard Nim【线性筛+FWT+快速幂】
T了两次之后我突然意识到转成fwt形式之后,直接快速幂每次乘一下最后再逆回来即可,并不需要没此次都正反转化一次……
就是根据nim的性质,先手必输是所有堆个数异或和为0,也就变成了一个裸的板子
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=500005,mod=1e9+7,inv2=500000004;
int n,m,q[N],tot,bt,lm;
long long a[N],c[N],r[N];
bool v[N];
void dft(long long a[],int f)
{
for(int i=1;i<lm;i<<=1)
for(int j=0;j<lm;j+=(i<<1))
for(int k=0;k<i;k++)
{
long long x=a[j+k],y=a[i+j+k];
a[j+k]=(x+y)%mod,a[i+j+k]=(x-y+mod)%mod;
if(f==-1)
a[i+j+k]=a[i+j+k]*inv2%mod,a[j+k]=a[j+k]*inv2%mod;
}
}
int main()
{
v[1]=1;
for(int i=2;i<=50000;i++)
{
if(!v[i])
q[++tot]=i;
for(int j=1;j<=tot&&i*q[j]<=50000;j++)
{
v[i*q[j]]=1;
if(i%q[j]==0)
break;
}
}
while(~scanf("%d%d",&n,&m))
{
memset(a,0,sizeof(a));
memset(r,0,sizeof(r));
bt=0,lm=0;
for(int i=1;i<=tot&&q[i]<=m;i++)
a[q[i]]=1;
for(;(1<<bt)<=m;bt++);
lm=(1<<bt);
n--;
dft(a,1);
for(int i=0;i<lm;i++)
r[i]=a[i];
while(n)
{
if(n&1)
{
for(int i=0;i<lm;i++)
r[i]=r[i]*a[i]%mod;
}
for(int i=0;i<lm;i++)
a[i]=a[i]*a[i]%mod;
n>>=1;
}
dft(r,-1);
printf("%lld\n",r[0]);
}
return 0;
}
bzoj 4589: Hard Nim【线性筛+FWT+快速幂】的更多相关文章
- 【51Nod1773】A国的贸易 FWT+快速幂
题目描述 给出一个长度为 $2^n$ 的序列,编号从0开始.每次操作后,如果 $i$ 与 $j$ 的二进制表示只差一位则第 $i$ 个数会加上操作前的第 $j$ 个数.求 $t$ 次操作后序列中的每个 ...
- BZOJ 4589 Hard Nim(FWT+博弈论+快速幂)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4589 [题目大意] 有n堆石子,每堆都是m以内的质数,请问后手必胜的局面有几种 [题解 ...
- FWT [BZOJ 4589:Hard Nim]
4589: Hard Nim Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 275 Solved: 152[Submit][Status][Disc ...
- bzoj 4589 Hard Nim——FWT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4589 一开始异或和为0的话先手必败.有 n 堆,每堆可以填那些数,求最后异或和为0的方案数, ...
- BZOJ 4589 Hard Nim(FWT加速DP)
题目链接 Hard Nim 设$f[i][j]$表示前$i$个数结束后异或和为$j$的方案数 那么$f[i][j] = f[i-1][j$ $\hat{}$ $k]$,满足$k$为不大于$m$的质数 ...
- bzoj 4589 Hard Nim —— FWT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4589 先手必败,是一开始所有石子的异或和为0: 生成函数 (xpri[1] + xpri[2 ...
- BZOJ.4589.Hard Nim(FWT)
题目链接 FWT 题意即,从所有小于\(m\)的质数中,选出\(n\)个数,使它们异或和为\(0\)的方案数. 令\(G(x)=[x是质数]\),其实就是对\(G(x)\)做\(n\)次异或卷积后得到 ...
- 【bzoj4589】Hard Nim FWT+快速幂
题目大意:给你$n$个不大于$m$的质数,求有多少种方案,使得这$n$个数的异或和为$0$.其中,$n≤10^9,m≤10^5$. 考虑正常地dp,我们用$f[i][j]$表示前$i$个数的异或和为$ ...
- BZOJ4589: Hard Nim(FWT 快速幂)
题意 题目链接 Sol 神仙题Orzzzz 题目可以转化为从\(\leqslant M\)的质数中选出\(N\)个\(xor\)和为\(0\)的方案数 这样就好做多了 设\(f(x) = [x \te ...
随机推荐
- 读取xml生成lua測试代码
#include <iostream> #include <string> #include <fstream> #include "tinyxml2.h ...
- GuozhongCrawler系列教程 (5) TransactionRequest具体解释
为了实现和维护并发抓取的属性信息提供线程安全的事务请求.TransactionRequest是一个抽象类自己不能设置Processor,却须要实现 TransactionCallBack接口.Tran ...
- MySQL优化之——触发器
转载请注明出处:http://blog.csdn.net/l1028386804/article/details/46763665 触发器是一个特殊的存储过程,不同的是存储过程要用CALL来调用,而触 ...
- Preference+PreferenceArray+DataModel
在Mahout中,用户的喜好被抽象为一个Preference,包含了userId,itemId和偏好值(user对item的偏好).Preference是一个接口,它有一个通用的实现是GenericP ...
- Phoenix put the sql back in NoSql
Overview | Apache Phoenix http://phoenix.apache.org/index.html Apache Phoenix enables OLTP and opera ...
- MD5的学习与练习
MD5加密的Java实现 在各种应用系统中,如果需要设置账户,那么就会涉及到存储用户账户信息的问题,为了保证所存储账户信息的安全,通常会采用MD5加密的方式来,进行存储.首先,简单得介绍一下,什么是M ...
- 浅谈HTTPS连接
相信很多朋友都遇到过网页被强插广告的情况,好端端一个干净的页面,动不动就被插了个屠龙宝刀点击就送的小窗口,看着就心烦.这种网页劫持强插广告的现象,在中国非常常见,往往是运营商进行HTTP劫持所造成的. ...
- C++11 std::function、std::bind和lambda表达式
参考博客: C++可调用对象详解-https://www.cnblogs.com/Philip-Tell-Truth/p/5814213.html 一.关于std::function与std::bin ...
- HDU 2222 Keywords Search(瞎搞)
Keywords Search Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others ...
- [RK3288][Android6.0] 调试笔记 --- 测试I2C设备正常传输方法【转】
本文转载自:http://blog.csdn.net/kris_fei/article/details/71515020 Platform: RockchipOS: Android 6.0Kernel ...