T了两次之后我突然意识到转成fwt形式之后,直接快速幂每次乘一下最后再逆回来即可,并不需要没此次都正反转化一次……

就是根据nim的性质,先手必输是所有堆个数异或和为0,也就变成了一个裸的板子

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=500005,mod=1e9+7,inv2=500000004;
int n,m,q[N],tot,bt,lm;
long long a[N],c[N],r[N];
bool v[N];
void dft(long long a[],int f)
{
for(int i=1;i<lm;i<<=1)
for(int j=0;j<lm;j+=(i<<1))
for(int k=0;k<i;k++)
{
long long x=a[j+k],y=a[i+j+k];
a[j+k]=(x+y)%mod,a[i+j+k]=(x-y+mod)%mod;
if(f==-1)
a[i+j+k]=a[i+j+k]*inv2%mod,a[j+k]=a[j+k]*inv2%mod;
}
}
int main()
{
v[1]=1;
for(int i=2;i<=50000;i++)
{
if(!v[i])
q[++tot]=i;
for(int j=1;j<=tot&&i*q[j]<=50000;j++)
{
v[i*q[j]]=1;
if(i%q[j]==0)
break;
}
}
while(~scanf("%d%d",&n,&m))
{
memset(a,0,sizeof(a));
memset(r,0,sizeof(r));
bt=0,lm=0;
for(int i=1;i<=tot&&q[i]<=m;i++)
a[q[i]]=1;
for(;(1<<bt)<=m;bt++);
lm=(1<<bt);
n--;
dft(a,1);
for(int i=0;i<lm;i++)
r[i]=a[i];
while(n)
{
if(n&1)
{
for(int i=0;i<lm;i++)
r[i]=r[i]*a[i]%mod;
}
for(int i=0;i<lm;i++)
a[i]=a[i]*a[i]%mod;
n>>=1;
}
dft(r,-1);
printf("%lld\n",r[0]);
}
return 0;
}

bzoj 4589: Hard Nim【线性筛+FWT+快速幂】的更多相关文章

  1. 【51Nod1773】A国的贸易 FWT+快速幂

    题目描述 给出一个长度为 $2^n$ 的序列,编号从0开始.每次操作后,如果 $i$ 与 $j$ 的二进制表示只差一位则第 $i$ 个数会加上操作前的第 $j$ 个数.求 $t$ 次操作后序列中的每个 ...

  2. BZOJ 4589 Hard Nim(FWT+博弈论+快速幂)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4589 [题目大意] 有n堆石子,每堆都是m以内的质数,请问后手必胜的局面有几种 [题解 ...

  3. FWT [BZOJ 4589:Hard Nim]

    4589: Hard Nim Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 275  Solved: 152[Submit][Status][Disc ...

  4. bzoj 4589 Hard Nim——FWT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4589 一开始异或和为0的话先手必败.有 n 堆,每堆可以填那些数,求最后异或和为0的方案数, ...

  5. BZOJ 4589 Hard Nim(FWT加速DP)

    题目链接  Hard Nim 设$f[i][j]$表示前$i$个数结束后异或和为$j$的方案数 那么$f[i][j] = f[i-1][j$ $\hat{}$ $k]$,满足$k$为不大于$m$的质数 ...

  6. bzoj 4589 Hard Nim —— FWT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4589 先手必败,是一开始所有石子的异或和为0: 生成函数 (xpri[1] + xpri[2 ...

  7. BZOJ.4589.Hard Nim(FWT)

    题目链接 FWT 题意即,从所有小于\(m\)的质数中,选出\(n\)个数,使它们异或和为\(0\)的方案数. 令\(G(x)=[x是质数]\),其实就是对\(G(x)\)做\(n\)次异或卷积后得到 ...

  8. 【bzoj4589】Hard Nim FWT+快速幂

    题目大意:给你$n$个不大于$m$的质数,求有多少种方案,使得这$n$个数的异或和为$0$.其中,$n≤10^9,m≤10^5$. 考虑正常地dp,我们用$f[i][j]$表示前$i$个数的异或和为$ ...

  9. BZOJ4589: Hard Nim(FWT 快速幂)

    题意 题目链接 Sol 神仙题Orzzzz 题目可以转化为从\(\leqslant M\)的质数中选出\(N\)个\(xor\)和为\(0\)的方案数 这样就好做多了 设\(f(x) = [x \te ...

随机推荐

  1. Effective C++ 43,44

    43.明智地使用多继承. 多继承带来了极大的复杂性.最主要的一条就是二义性. 当派生类为多继承时,其多个基类有同名的成员时,就会出现二义性.通常要明白其使用哪个成员的.显式地限制修饰成员不仅非常笨拙, ...

  2. SQL面试练习(MySql)

    创建测试数据库: /*如果已经存在此数据库,先删除*/ drop database if exists sqltest ; /*创建并设置编码为UTF-8*/ create database sqlt ...

  3. C++类使用static小例子(新手学习C++)

    //为什么类的成员中不能包括动态分配的数据,若包含静态数据怎么使用?#include <iostream>using namespace std;class point{    priva ...

  4. vue 单页面(SPA) history模式调用微信jssdk 跳转后偶尔 "invalid signature"错误解决方案

    项目背景 vue-cli生成的单页面项目,router使用history模式.产品会在公众号内使用,需要添加微信JSSDK,做分享相关配置. 遇到的问题 相关配置与JS接口安全域名都已经ok,发布后, ...

  5. JAVA学习之 Model2中的Servlet与.NET一般处理程序傻傻分不清楚

    时隔多日,多日合适吗,应该是时隔多月.我又想起了一般处理程序.这都是由于近期在实现的DRP系统中经经常使用到jsp+servlet达到界面与逻辑的分离.servlet负责处理从jsp传回的信息:每当这 ...

  6. 阿里巴巴Java开发手册(开发规范)——编程规约笔记

    2.常量规约 [推荐]如果变量值仅在一个范围内变化用Enum类. 如果还带有名称之外的延伸属性,必须使用Enum类, 下面正例中的数字就是延伸信息,表示星期几. 正例: public Enum{ MO ...

  7. SimpleHTTPServer

    SimpleHTTPServer python -m SimpleHTTPServer 8989

  8. ElasticSearch远程随意代码运行漏洞(CVE-2014-3120)分析

    原理 这个漏洞实际上非常easy,ElasticSearch有脚本运行(scripting)的功能,能够非常方便地对查询出来的数据再加工处理. ElasticSearch用的脚本引擎是MVEL,这个引 ...

  9. 使用forever让node.js持久运行

    何为forever?forever可以看做是一个nodejs的守护进程,能够启动,停止,重启我们的app应用. npm install forever -g #安装 forever start app ...

  10. 静态代理、动态代理和cglib代理

    转:https://www.cnblogs.com/cenyu/p/6289209.html 代理(Proxy)是一种设计模式,提供了对目标对象另外的访问方式;即通过代理对象访问目标对象.这样做的好处 ...