https://scut.online/p/290

一个 N 个数的取数游戏,Kaildls 和 Parco 轮流操作,每次操作从 N 个数中取一个数 y 并把他变成 y-x(满足 x | y 且x < y),无法操作的人输。

假设 Kaildls 先手且两人都是用最优策略,请问最后谁会赢?

第一次学SG函数,要找的是每次能从石子堆中取走的数目,记录下来。

最后的Nim和为0是后手赢?

#include<bits/stdc++.h>
using namespace std;
#define ll long long #define MAXN 1000005
#define N 1000005 //f[N]:可改变当前状态的方式,N为方式的种类,f[N]要在getSG之前先预处理
//SG[]:0~n的SG函数值
//S[]:为x后继状态的集合
vector<int> nextofSG[MAXN];
int f[N],SG[MAXN],S[MAXN];
void getSG(int n){
for(int i = ; i <= n; i++){
int l=nextofSG[i].size();
//后继状态 最多有l 种
for(int j=;j<=l;j++){
S[j]=;
}
for(auto vi:nextofSG[i]){
//vi:从i状态能取走的石子数
S[SG[i-vi]]=;
}
for(int j=;j<=l;j++){
if(!S[j]){
SG[i] = j;
break;
}
}
//cout<<"SG["<<i<<"]="<<SG[i]<<endl;
} } int a[]; unsigned generateai(unsigned &n,unsigned &x,unsigned &y, unsigned &z){
x=x^(x<<);
x=x^(x>>);
x=x^(x<<);
x=x^(x>>);
unsigned w=x^(y^z);
x=y;
y=z;
z=w;
return z;
} int main(){
unsigned n,x,y,z;
for(int i=;i<=;i++){
for(int j=i+i;j<=;j+=i){
nextofSG[j].push_back(i);
}
}
getSG();
for(int t=;t<;t++){
cin>>n>>x>>y>>z;
int sumSG=;
for(int i=;i<n;i++){
a[i]=generateai(n,x,y,z)%n+;
//cout<<a[i]<<endl;
sumSG^=SG[a[i]];
}
//cout<<"!"<<sumSG<<endl;
if(sumSG==)
cout<<"Parco"<<endl;
else{
cout<<"Kaildls"<<endl;
}
}
}

SCUT - 290 - PARCO的因数游戏 - 博弈论的更多相关文章

  1. POJ.1067 取石子游戏 (博弈论 威佐夫博弈)

    POJ.1067 取石子游戏 (博弈论 威佐夫博弈) 题意分析 简单的威佐夫博弈 博弈论快速入门 代码总览 #include <cstdio> #include <cmath> ...

  2. HDU.2516 取石子游戏 (博弈论 斐波那契博弈)

    HDU.2516 取石子游戏 (博弈论 斐波那契博弈) 题意分析 简单的斐波那契博弈 博弈论快速入门 代码总览 #include <bits/stdc++.h> #define nmax ...

  3. 【Foreign】石子游戏 [博弈论]

    石子游戏 Time Limit: 10 Sec  Memory Limit: 256 MB Description Input Output 输出T行,表示每组的答案. Sample Input 3 ...

  4. BZOJ 1022 Luogu P4279 [SHOI2008]小约翰的游戏 (博弈论)

    题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=1022 (luogu) https://www.luogu.org/pro ...

  5. Day1T1仓鼠的石子游戏——博弈论

    打比赛的时候还没学博弈论,打完下来花了半个多小时学完,发现这题就是一道\(SG\)函数 其实当时差一点就\(YY\)出了答案,但是后面太难想,所以没整出来 机房大佬们都说自己没学博弈论,但是都AC 题 ...

  6. NOIP2010pj三国游戏[博弈论]

    题目描述 小涵很喜欢电脑游戏,这些天他正在玩一个叫做<三国>的游戏. 在游戏中,小涵和计算机各执一方,组建各自的军队进行对战.游戏中共有 N 位武将(N为偶数且不小于 4),任意两个武将之 ...

  7. bzoj1188 [HNOI2007]分裂游戏 博弈论 sg函数的应用

    1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 973  Solved: 599[Submit][Status ...

  8. BZOJ3105: [cqoi2013]新Nim游戏 博弈论+线性基

    一个原来写的题. 既然最后是nim游戏,且玩家是先手,则希望第二回合结束后是一个异或和不为0的局面,这样才能必胜. 所以思考一下我们要在第一回合留下线性基 然后就是求线性基,因为要取走的最少,所以排一 ...

  9. hdu 2516 取石子游戏 博弈论

    很显然的nim游戏的变形,很好找规律 先手败:2,3,5,8,13…… 其他先手胜.即满足菲波拉数列. 代码如下: #include<iostream> #include<stdio ...

随机推荐

  1. BUPT复试专题—统计字母(2008)

    题目描述 给定一个只有小写英文字母组成的字符串,串长为n.请你编写程序求出这个字符串中出现次数最多的字母. 输入 输入的第一行为t(0 < t < 10),表示有t组测试用例.对于每组测试 ...

  2. linux 状态与系统调优

    什么样的cup 才算是负载高呢?才算忙呢?

  3. 转: DNS 原理入门 (from 阮一峰)

    转自:http://www.ruanyifeng.com/blog/2016/06/dns.html DNS 原理入门   作者: 阮一峰 日期: 2016年6月16日 DNS 是互联网核心协议之一. ...

  4. 使用RPi-Monitor监控、统计Guitar的运行状态

    前言 之前发在ickey社区上的一系列文章: 犹抱琵琶半遮面,无人知是荔枝来--unboxing & interview 一.二.三 葡萄美酒夜光杯,巧妇难为无米炊--资料与社区 一支穿云箭, ...

  5. Android设置系统开机自己主动永不休眠

    android4.2系统增永不休眠同一时候隐藏休眠选项 1. android\frameworks\base\packages\SettingsProvider\res\values\defaults ...

  6. java使用默认线程池踩过的坑(三)

    云智慧(北京)科技有限公司 陈鑫 重新启动线程池 TaskManager public class TaskManager implements Runnable { -.. public TaskM ...

  7. Robot Framework自己主动化測试框架之我见

    一些自己主动化測试现状: 盲目的去做自己主动化,终于以失败告终. 觉得是能提高效率的事情.却推广不下去: 事实上上述问题产生的原因是: 自己主动化測试案例稳定性不高,可维护性比較差: 自己主动化測试工 ...

  8. Service-level agreement

    Service-level agreement - Wikipedia https://en.wikipedia.org/wiki/Service-level_agreement

  9. JavaScript算法题(二) && 数组filter使用

    1.Let's implement the reject() function... 例: var odds = reject([1, 2, 3, 4, 5, 6], function(num){ r ...

  10. LIS(最长上升子序列)的三种经典求法

    求最长上升子序列的三种经典方案: 给定一个长度为 \(N\) 的数列,求它数值单调递增的子序列长度最大为多少.即已知有数列 \(A\) , \(A=\{A_1,A_2....A_n\}\) ,求 \( ...