Intrusion Detection Using Convolutional Neural Networks for Representation Learning 笔记
Intrusion Detection Using Convolutional Neural Networks for Representation Learning
2.2 实验数据的预处理
为了确定NSL-KDD数据与CNN的图像转换,我们设计了一种方法,将NSL-KDD数据格式转换为视觉图像类型。为了实现这一目标,我们将各种类型的特征映射到二进制矢量空间,然后将二进制矢量转换为图像。
符号特征。NSL-KDD数据属性中有三种符号数据类型:协议类型、标志和服务。如图2所示,我们使用单热编码器将这些特征映射到二进制向量中。例如,protocol_type有三个值(tcp, udp, icmp),变成三个维度的二进制向量(100, 010, 100)。
连续特征。连续特征包括整数和浮点数类型的特征。我们使用标准标度器将连续数据归一到[0, 1]范围。标准缩放器指的是将数据缩放到一个特定的区间。在本文中,使用了最小-最大归一化方法。就是说
\]
(1)
其中x代表数字特征值,\(x_{min}\)代表特征的最小值,\(x_{max}\)代表最大值,\(x_{new}\)代表归一化后的值。在归一化处理后,我们将缩放后的连续值离散成10个区间。然后,我们使用单热编码器将间隔的顺序号编码为10个二进制向量,如图3所示。
Intrusion Detection Using Convolutional Neural Networks for Representation Learning 笔记的更多相关文章
- Convolutional Neural Networks from deep learning (assignment 1 from week 1)
Convolutional Neural Networks https://www.coursera.org/learn/convolutional-neural-networks/home/welc ...
- 课程四(Convolutional Neural Networks),第一周(Foundations of Convolutional Neural Networks) —— 0.Learning Goals
Learning Goals Understand the convolution operation Understand the pooling operation Remember the vo ...
- Neural Networks and Deep Learning 笔记
1 Introduction to Deep Learning 介绍了神经网络的定义,有监督学习,分析了为什么深度学习会崛起 1.1 结构化数据/非结构化数据 结构化数据:有一个确切的数据库,有key ...
- tensorfolw配置过程中遇到的一些问题及其解决过程的记录(配置SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving)
今天看到一篇关于检测的论文<SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real- ...
- (转)A Beginner's Guide To Understanding Convolutional Neural Networks Part 2
Adit Deshpande CS Undergrad at UCLA ('19) Blog About A Beginner's Guide To Understanding Convolution ...
- 论文笔记之:Learning Multi-Domain Convolutional Neural Networks for Visual Tracking
Learning Multi-Domain Convolutional Neural Networks for Visual Tracking CVPR 2016 本文提出了一种新的CNN 框架来处理 ...
- [转] Understanding Convolutional Neural Networks for NLP
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/ 讲CNN以及其在NLP的应用,非常 ...
- [转]An Intuitive Explanation of Convolutional Neural Networks
An Intuitive Explanation of Convolutional Neural Networks https://ujjwalkarn.me/2016/08/11/intuitive ...
- Understanding Convolutional Neural Networks for NLP
When we hear about Convolutional Neural Network (CNNs), we typically think of Computer Vision. CNNs ...
- 【论文翻译】MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 论文链接:https://arxi ...
随机推荐
- Clumpify:能使 Fastq 压缩文件再缩小 30% 并加速后续分析流程
由于微信不允许外部链接,你需要点击文章尾部左下角的 "阅读原文",才能访问文中链接. Clumpify 是 BBMap 工具包中的一个组件,它与其他工具略有不同的是 Clumpif ...
- 2023-06-08:给你一棵二叉树的根节点 root ,返回树的 最大宽度 。 树的 最大宽度 是所有层中最大的 宽度 。 每一层的 宽度 被定义为该层最左和最右的非空节点(即,两个端点)之间的长度
2023-06-08:给你一棵二叉树的根节点 root ,返回树的 最大宽度 . 树的 最大宽度 是所有层中最大的 宽度 . 每一层的 宽度 被定义为该层最左和最右的非空节点(即,两个端点)之间的长度 ...
- FnOnce , FnMut <RUST>
FnOnce 1 #[lang = "fn_once"] 2 #[must_use = "closures are lazy and do nothing unless ...
- NOIP模拟测试A3 赛后总结
T1 谜之阶乘 可以发现题目要求我们求的实际上是若干个连续整数 \(c_i\) ,使得 \(\displaystyle \prod c_i = n\),通过打表可以发现这些连续整数的长度 \(d\) ...
- 一分钟学一个 Linux 命令 - find 和 grep
前言 大家好,我是 god23bin.欢迎来到<一分钟学一个 Linux 命令>系列,每天只需一分钟,记住一个 Linux 命令不成问题.今天需要你花两分钟时间来学习下,因为今天要介绍的是 ...
- Kubernetes(k8s)访问控制:身份认证
目录 一.系统环境 二.前言 三.Kubernetes访问控制 四.身份认证简介 五.身份认证 5.1 配置客户端机器 5.2 使用base auth的方式进行认证 5.3 使用token的方式进行认 ...
- celery笔记六之worker介绍
本文首发于公众号:Hunter后端 原文链接:celery笔记六之worker介绍 前面我们介绍过 celery 的理想的设计方式是几个 worker 处理特定的任务队列的数据,这样可以避免任务在队列 ...
- Java正三角、倒三角
正三角 public static void main(String[] args) { // 正三角 int num = 8; for(int i = 1;i<=num;i++) { for( ...
- python笔记:第三章使用字符串
1.1 字符串的基本操作 对序列的操作都适用于字符串,但字符串是不可变的,所以元素赋值和切片赋值都是非法的 1.2 设置字符串的格式 方法一: 使用%来设置字符串 format = 'Hello, % ...
- Chrome浏览器,有道云笔记的网页剪报需要多次登录且收藏失败报错
报错代码 {"canTryAgain":false,"scope":"SECURITY","error":"2 ...