题目链接

题目

题目描述

There are several ancient Greek texts that contain descriptions of the fabled island Atlantis. Some of these texts even include maps of parts of the island. But unfortunately, these maps describe different regions of Atlantis. Your friend Bill has to know the total area for which maps exist. You (unwisely) volunteered to write a program that calculates this quantity.

输入描述

The input consists of several test cases. Each test case starts with a line containing a single integer n \((1 \leq n \leq 100)\) of available maps. The n following lines describe one map each. Each of these lines contains four numbers \(x_1;y_1;x_2;y_2\) \((0 \leq x_1 \lt x_2 \leq 100000;0 \leq y_1 \lt y_2 \leq 100000)\) , not necessarily integers. The values \((x_1; y_1)\) and \((x_2;y_2)\) are the coordinates of the top-left resp. bottom-right corner of the mapped area.

The input file is terminated by a line containing a single 0. Don't process it.

输出描述

For each test case, your program should output one section. The first line of each section must be "Test case #k", where k is the number of the test case (starting with 1). The second one must be "Total explored area: a", where a is the total explored area (i.e. the area of the union of all rectangles in this test case), printed exact to two digits to the right of the decimal point.

Output a blank line after each test case.

示例1

输入

2
10 10 20 20
15 15 25 25.5
0

输出

Test case #1
Total explored area: 180.00

题解

知识点:扫描线,线段树,离散化。

线段树+扫面线处理面积并问题,是板子题。

更新时,通过到上次更新的距离与线段覆盖长度,来计算面积。

时间复杂度 \(O(n \log n)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>
using namespace std;
using ll = long long; template<class T>
struct Discretization {
vector<T> uniq;
Discretization() {}
Discretization(const vector<T> &src) { init(src); }
void init(const vector<T> &src) {
uniq = src;
sort(uniq.begin() + 1, uniq.end());
uniq.erase(unique(uniq.begin() + 1, uniq.end()), uniq.end());
}
int get(T x) { return lower_bound(uniq.begin() + 1, uniq.end(), x) - uniq.begin(); }
}; template<class T>
class ScanlineA {
struct Segment {
int l, r;
int cover;
T len;
}; int n;
vector<T> dot;
vector<Segment> node; void push_up(int rt) {
if (node[rt].cover) node[rt].len = dot[node[rt].r + 1] - dot[node[rt].l];
else if (node[rt].l == node[rt].r) node[rt].len = 0;
else node[rt].len = node[rt << 1].len + node[rt << 1 | 1].len;
} void update(int rt, int l, int r, int x, int y, int cover) {
if (r < x || y < l) return;
if (x <= l && r <= y) return node[rt].cover += cover, push_up(rt);
int mid = l + r >> 1;
update(rt << 1, l, mid, x, y, cover);
update(rt << 1 | 1, mid + 1, r, x, y, cover);
push_up(rt);
} public:
ScanlineA() {}
ScanlineA(const vector<T> &_dot) { init(_dot); }
void init(const vector<T> &_dot) {
assert(_dot.size() >= 2);
n = _dot.size() - 2;
dot = _dot;
node.assign(n << 2, { 0,0,0,0 });
function<void(int, int, int)> build = [&](int rt, int l, int r) {
node[rt] = { l,r,0,0 };
if (l == r) return;
int mid = l + r >> 1;
build(rt << 1, l, mid);
build(rt << 1 | 1, mid + 1, r);
};
build(1, 1, n);
} void update(int x, int y, int cover) { update(1, 1, n, x, y, cover); } Segment query() { return node[1]; }
};
/// 面积并扫描线特化线段树,O(logn),配合离散化可以处理任意精度覆盖长度并问题
/// 求面积并,O(nlogn),面积并 = sum(两次扫描的距离*覆盖长度并)
//* 其中n代表线段数,并非端点数,端点数应为n+1
//* 端点编号从1开始,线段编号也从1开始
//* 任何区间(如l,r或x,y)都代表线段编号而非端点编号,即表示dot[l]到dot[r + 1],使用时注意 template<class T>
struct pk {
T val;
friend bool operator<(const pk &a, const pk &b) {
if (abs(a.val - b.val) < 1e-6) return false;//! 浮点型注意相等条件
return a.val < b.val;
}
friend bool operator==(const pk &a, const pk &b) { return !(a < b) && !(b < a); }
};
//* 专门处理浮点型比较判断的封装类 template<class T>
struct edge {
T x;
pk<T> y1, y2;
int rky1, rky2;
int flag;
}; int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n;
int cnt = 0;
cout << fixed << setprecision(2);
while (cnt++, cin >> n, n) {
if (cnt > 1) cout << '\n';
vector<edge<double>> e(2 * n + 1);
vector<pk<double>> y_src(2 * n + 1);
for (int i = 1;i <= n;i++) {
double x1, y1, x2, y2;
cin >> x1 >> y1 >> x2 >> y2;
e[2 * i - 1] = { x1,{y1},{y2},0,0,1 };
e[2 * i] = { x2,{y1},{y2},0,0,-1 };
y_src[2 * i - 1] = { y1 };
y_src[2 * i] = { y2 };
} Discretization<pk<double>> dc(y_src);
for (int i = 1;i <= n;i++) {
e[2 * i - 1].rky1 = dc.get({ e[2 * i - 1].y1 });
e[2 * i - 1].rky2 = dc.get({ e[2 * i - 1].y2 });
e[2 * i].rky1 = dc.get({ e[2 * i].y1 });
e[2 * i].rky2 = dc.get({ e[2 * i].y2 });
}
sort(e.begin() + 1, e.end(), [&](const auto &a, const auto &b) {return a.x < b.x;}); vector<double> dot(dc.uniq.size());
for (int i = 1;i < dot.size();i++) dot[i] = dc.uniq[i].val;
ScanlineA<double> sla(dot);
double ans = 0;
sla.update(e[1].rky1, e[1].rky2 - 1, e[1].flag);
for (int i = 2;i <= 2 * n;i++) {
ans += (e[i].x - e[i - 1].x) * sla.query().len;
sla.update(e[i].rky1, e[i].rky2 - 1, e[i].flag);
}
cout << "Test case #" << cnt << '\n';
cout << "Total explored area: " << ans << '\n';
}
return 0;
}
/*
2
10 10 20 20
15 15 25 25.5
2
10 10 20 20
15 15 25 25.5
0 Test case #1
Total explored area: 180.00 Test case #2
Total explored area: 180.00
*/

NC51111 Atlantis的更多相关文章

  1. [POJ1151]Atlantis

    [POJ1151]Atlantis 试题描述 There are several ancient Greek texts that contain descriptions of the fabled ...

  2. 线段树---Atlantis

    题目网址:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=110064#problem/A Description There are se ...

  3. hdu 1542 Atlantis(线段树,扫描线)

    Atlantis Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

  4. 【POJ】1151 Atlantis(线段树)

    http://poj.org/problem?id=1151 经典矩形面积并吧.....很简单我就不说了... 有个很神的地方,我脑残没想到: 将线段变成点啊QAQ这样方便计算了啊 还有个很坑的地方, ...

  5. HDU 1542 Atlantis(线段树扫描线+离散化求面积的并)

    Atlantis Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

  6. POJ 1542 Atlantis(线段树 面积 并)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1542 参考网址:http://blog.csdn.net/sunmenggmail/article/d ...

  7. [POJ 1151] Atlantis

    一样的题:HDU 1542 Atlantis Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 18148   Accepted ...

  8. 【HDU 1542】Atlantis 矩形面积并(线段树,扫描法)

    [题目] Atlantis Problem Description There are several ancient Greek texts that contain descriptions of ...

  9. 【POJ1151】【扫描线+线段树】Atlantis

    Description There are several ancient Greek texts that contain descriptions of the fabled island Atl ...

  10. hdu 1542 Atlantis(段树&amp;扫描线&amp;面积和)

    Atlantis Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

随机推荐

  1. MAUI使用Masa blazor组件库

    上一篇(点击阅读)我们实现了UI在Web端(Blazor Server/Wasm)和客户端(Windows/macOS/Android/iOS)共享,这篇我加上 Masa Blazor组件库的引用,并 ...

  2. [转帖]Oracle中unicode的几种不同字符编码模式

    https://zhuanlan.zhihu.com/p/668340691#   在Oracle中unicode字符集中,存在以下几种不同unicode字符集的编码模式 AL32UTF8 UTF8 ...

  3. [转帖]一份完整的阿里云 Redis 开发规范,值得收藏!

    https://blog.csdn.net/NicolasLearner/article/details/117449847 作者:付磊-起扬 http://yq.aliyun.com/article ...

  4. [转帖]实战演练 | Navicat 数据生成功能

    https://zhuanlan.zhihu.com/p/631823381 数据生成的目的是依据某个数据模型,从原始数据通过计算得到目标系统所需要的符合该模型的数据.数据生成与数据模型是分不开的,数 ...

  5. [转帖]Titan 配置

    https://www.bookstack.cn/read/TiDB-4.0/storage-engine-titan-configuration.md 开启 Titan Titan 对 RocksD ...

  6. [转帖] JVM诊断命令jcmd介绍

    https://www.cnblogs.com/codelogs/p/16535451.html 简介# 从JDK7开始,jdk提供了一个方便扩展的诊断命令jcmd,用来取代之前比较分散的jdk基础命 ...

  7. 【转帖】GPT4All开源的聊天机器人

    GPT4All是一个开源的聊天机器人,它基于LLaMA的大型语言模型训练而成,使用了大量的干净的助手数据,包括代码.故事和对话.它可以在本地运行,不需要云服务或登录,也可以通过Python或Types ...

  8. [转帖]Windows磁盘性能压测(1)-DiskSpd

    http://www.manongjc.com/detail/59-xrydhtisrajqsxn.html 本文章向大家介绍Windows磁盘性能压测(1)-DiskSpd,主要内容包括其使用实例. ...

  9. NutUI 4.0 正式发布!

    作者: 京东零售 NutUI NutUI 4.0 Github 地址:github.com/jdf2e/nutui NutUI 4.0 官网:nutui.jd.com 前言 技术日异月新.发展创新.持 ...

  10. 【JS 逆向百例】XHR 断点调试,Steam 登录逆向

    声明 本文章中所有内容仅供学习交流,抓包内容.敏感网址.数据接口均已做脱敏处理,严禁用于商业用途和非法用途,否则由此产生的一切后果均与作者无关,若有侵权,请联系我立即删除! 逆向目标 目标:Steam ...