[转帖]【JVM】JVM源码分析之Metaspace解密
概述
metaspace,顾名思义,元数据空间,专门用来存元数据的,它是jdk8里特有的数据结构用来替代perm,这块空间很有自己的特点,前段时间公司这块的问题太多了,主要是因为升级了中间件所致,看到大家讨论来讨论去,看得出很多人对metaspace还是模棱两可,不是很了解它,因此我觉得有必要写篇文章来介绍一下它,解开它神秘的面纱,当我们再次碰到它的相关问题的时候不会再感到束手无策。
为什么会有metaspace
metaspace的由来民间已有很多传说,不过我这里只谈我自己的理解,因为我不是oracle参与这块的开发者,所以对其真正的由来不怎么了解。
我们都知道jdk8之前有perm这一整块内存来存klass等信息,我们的参数里也必不可少地会配置-XX:PermSize以及-XX:MaxPermSize来控制这块内存的大小,jvm在启动的时候会根据这些配置来分配一块连续的内存块,但是随着动态类加载的情况越来越多,这块内存我们变得不太可控,到底设置多大合适是每个开发者要考虑的问题,如果设置太小了,系统运行过程中就容易出现内存溢出,设置大了又总感觉浪费,尽管不会实质分配这么大的物理内存。基于这么一个可能的原因,于是metaspace出现了,希望内存的管理不再受到限制,也不要怎么关注元数据这块的OOM问题,虽然到目前来看,也并没有完美地解决这个问题。
或许从JVM代码里也能看出一些端倪来,比如MaxMetaspaceSize默认值很大,CompressedClassSpaceSize默认也有1G,从这些参数我们能猜到metaspace的作者不希望出现它相关的OOM问题。
metaspace的组成
metaspace其实由两大部分组成
- Klass Metaspace
- NoKlass Metaspace
Klass Metaspace就是用来存klass的,klass是我们熟知的class文件在jvm里的运行时数据结构,不过有点要提的是我们看到的类似A.class其实是存在heap里的,是java.lang.Class的一个对象实例。这块内存是紧接着Heap的,和我们之前的perm一样,这块内存大小可通过-XX:CompressedClassSpaceSize参数来控制,这个参数前面提到了默认是1G,但是这块内存也可以没有,假如没有开启压缩指针就不会有这块内存,这种情况下klass都会存在NoKlass Metaspace里,另外如果我们把-Xmx设置大于32G的话,其实也是没有这块内存的,因为会这么大内存会关闭压缩指针开关。还有就是这块内存最多只会存在一块。
NoKlass Metaspace专门来存klass相关的其他的内容,比如method,constantPool等,这块内存是由多块内存组合起来的,所以可以认为是不连续的内存块组成的。这块内存是必须的,虽然叫做NoKlass Metaspace,但是也其实可以存klass的内容,上面已经提到了对应场景。
Klass Metaspace和NoKlass Mestaspace都是所有classloader共享的,所以类加载器们要分配内存,但是每个类加载器都有一个SpaceManager,来管理属于这个类加载的内存小块。如果Klass Metaspace用完了,那就会OOM了,不过一般情况下不会,NoKlass Mestaspace是由一块块内存慢慢组合起来的,在没有达到限制条件的情况下,会不断加长这条链,让它可以持续工作。
metaspace的几个参数
如果我们要改变metaspace的一些行为,我们一般会对其相关的一些参数做调整,因为metaspace的参数本身不是很多,所以我这里将涉及到的所有参数都做一个介绍,也许好些参数大家都是有误解的
- UseLargePagesInMetaspace
- InitialBootClassLoaderMetaspaceSize
- MetaspaceSize
- MaxMetaspaceSize
- CompressedClassSpaceSize
- MinMetaspaceExpansion
- MaxMetaspaceExpansion
- MinMetaspaceFreeRatio
UseLargePagesInMetaspace
默认false,这个参数是说是否在metaspace里使用LargePage,一般情况下我们使用4KB的page size,这个参数依赖于UseLargePages这个参数开启,不过这个参数我们一般不开。
InitialBootClassLoaderMetaspaceSize
64位下默认4M,32位下默认2200K,metasapce前面已经提到主要分了两大块,Klass Metaspace以及NoKlass Metaspace,而NoKlass Metaspace是由一块块内存组合起来的,这个参数决定了NoKlass Metaspace的第一个内存Block的大小,即2*InitialBootClassLoaderMetaspaceSize,同时为bootstrapClassLoader的第一块内存chunk分配了InitialBootClassLoaderMetaspaceSize的大小
MetaspaceSize
默认20.8M左右(x86下开启c2模式),主要是控制metaspaceGC发生的初始阈值,也是最小阈值,但是触发metaspaceGC的阈值是不断变化的,与之对比的主要是指Klass Metaspace与NoKlass Metaspace两块committed的内存和。
MaxMetaspaceSize
默认基本是无穷大,但是我还是建议大家设置这个参数,因为很可能会因为没有限制而导致metaspace被无止境使用(一般是内存泄漏)而被OS Kill。这个参数会限制metaspace(包括了Klass Metaspace以及NoKlass Metaspace)被committed的内存大小,会保证committed的内存不会超过这个值,一旦超过就会触发GC,这里要注意和MaxPermSize的区别,MaxMetaspaceSize并不会在jvm启动的时候分配一块这么大的内存出来,而MaxPermSize是会分配一块这么大的内存的。
CompressedClassSpaceSize
默认1G,这个参数主要是设置Klass Metaspace的大小,不过这个参数设置了也不一定起作用,前提是能开启压缩指针,假如-Xmx超过了32G,压缩指针是开启不来的。如果有Klass Metaspace,那这块内存是和Heap连着的。
MinMetaspaceExpansion
MinMetaspaceExpansion和MaxMetaspaceExpansion这两个参数或许和大家认识的并不一样,也许很多人会认为这两个参数不就是内存不够的时候,然后扩容的最小大小吗?其实不然
这两个参数和扩容其实并没有直接的关系,也就是并不是为了增大committed的内存,而是为了增大触发metaspace GC的阈值
这两个参数主要是在比较特殊的场景下救急使用,比如gcLocker或者should_concurrent_collect的一些场景,因为这些场景下接下来会做一次GC,相信在接下来的GC中可能会释放一些metaspace的内存,于是先临时扩大下metaspace触发GC的阈值,而有些内存分配失败其实正好是因为这个阈值触顶导致的,于是可以通过增大阈值暂时绕过去
默认332.8K,增大触发metaspace GC阈值的最小要求。假如我们要救急分配的内存很小,没有达到MinMetaspaceExpansion,但是我们会将这次触发metaspace GC的阈值提升MinMetaspaceExpansion,之所以要大于这次要分配的内存大小主要是为了防止别的线程也有类似的请求而频繁触发相关的操作,不过如果要分配的内存超过了MaxMetaspaceExpansion,那MinMetaspaceExpansion将会是要分配的内存大小基础上的一个增量
MaxMetaspaceExpansion
默认5.2M,增大触发metaspace GC阈值的最大要求。假如说我们要分配的内存超过了MinMetaspaceExpansion但是低于MaxMetaspaceExpansion,那增量是MaxMetaspaceExpansion,如果超过了MaxMetaspaceExpansion,那增量是MinMetaspaceExpansion加上要分配的内存大小
注:每次分配只会给对应的线程一次扩展触发metaspace GC阈值的机会,如果扩展了,但是还不能分配,那就只能等着做GC了
MinMetaspaceFreeRatio
MinMetaspaceFreeRatio和下面的MaxMetaspaceFreeRatio,主要是影响触发metaspaceGC的阈值
默认40,表示每次GC完之后,假设我们允许接下来metaspace可以继续被commit的内存占到了被commit之后总共committed的内存量的MinMetaspaceFreeRatio%,如果这个总共被committed的量比当前触发metaspaceGC的阈值要大,那么将尝试做扩容,也就是增大触发metaspaceGC的阈值,不过这个增量至少是MinMetaspaceExpansion才会做,不然不会增加这个阈值
这个参数主要是为了避免触发metaspaceGC的阈值和gc之后committed的内存的量比较接近,于是将这个阈值进行扩大
一般情况下在gc完之后,如果被committed的量还是比较大的时候,换个说法就是离触发metaspaceGC的阈值比较接近的时候,这个调整会比较明显
注:这里不用gc之后used的量来算,主要是担心可能出现committed的量超过了触发metaspaceGC的阈值,这种情况一旦发生会很危险,会不断做gc,这应该是jdk8在某个版本之后才修复的bug
MaxMetaspaceFreeRatio
默认70,这个参数和上面的参数基本是相反的,是为了避免触发metaspaceGC的阈值过大,而想对这个值进行缩小。这个参数在gc之后committed的内存比较小的时候并且离触发metaspaceGC的阈值比较远的时候,调整会比较明显
jstat里的metaspace字段
我们看GC是否异常,除了通过GC日志来做分析之外,我们还可以通过jstat这样的工具展示的数据来分析,我们通过jstat可以看到metaspace相关的这么一些指标,分别是M,CCS,MC,MU,CCSC,CCSU,MCMN,MCMX,CCSMN,CCSMX
它们的定义如下:
column {
header "^M^" /* Metaspace - Percent Used */
data (1-((sun.gc.metaspace.capacity - sun.gc.metaspace.used)/sun.gc.metaspace.capacity)) * 100
align right
width 6
scale raw
format "0.00"
}
column {
header "^CCS^" /* Compressed Class Space - Percent Used */
data (1-((sun.gc.compressedclassspace.capacity -
sun.gc.compressedclassspace.used)/sun.gc.compressedclassspace.capacity)) * 100
align right
width 6
scale raw
format "0.00"
}
column {
header "MC" /* Metaspace Capacity - Current /
data sun.gc.metaspace.capacity
align center
width 6
scale K
format "0.0"
}
column {
header "MU" / Metaspae Used /
data sun.gc.metaspace.used
align center
width 6
scale K
format "0.0"
}
column {
header "CCSC" / Compressed Class Space Capacity - Current /
data sun.gc.compressedclassspace.capacity
width 8
align right
scale K
format "0.0"
}
column {
header "CCSU" / Compressed Class Space Used /
data sun.gc.compressedclassspace.used
width 8
align right
scale K
format "0.0"
}
column {
header "MCMN" / Metaspace Capacity - Minimum /
data sun.gc.metaspace.minCapacity
scale K
align right
width 8
format "0.0"
}
column {
header "MCMX" / Metaspace Capacity - Maximum /
data sun.gc.metaspace.maxCapacity
scale K
align right
width 8
format "0.0"
}
column {
header "CCSMN" / Compressed Class Space Capacity - Minimum /
data sun.gc.compressedclassspace.minCapacity
scale K
align right
width 8
format "0.0"
}
column {
header "CCSMX" / Compressed Class Space Capacity - Maximum */
data sun.gc.compressedclassspace.maxCapacity
scale K
align right
width 8
format "0.0"
}
我这里对这些字段分类介绍下
MC & MU & CCSC & CCSU
MC表示Klass Metaspace以及NoKlass Metaspace两者总共committed的内存大小,单位是KB,虽然从上面的定义里我们看到了是capacity,但是实质上计算的时候并不是capacity,而是committed,这个是要注意的
MU这个无可厚非,说的就是Klass Metaspace以及NoKlass Metaspace两者已经使用了的内存大小
CCSC表示的是Klass Metaspace的已经被commit的内存大小,单位也是KB
CCSU表示Klass Metaspace的已经被使用的内存大小
M & CCS
M表示的是Klass Metaspace以及NoKlass Metaspace两者总共的使用率,其实可以根据上面的四个指标算出来,即(CCSU+MU)/(CCSC+MC)
CCS表示的是NoKlass Metaspace的使用率,也就是CCSU/CCSC算出来的
PS:所以我们有时候看到M的值达到了90%以上,其实这个并不一定说明metaspace用了很多了,因为内存是慢慢commit的,所以我们的分母是慢慢变大的,不过当我们committed到一定量的时候就不会再增长了
MCMN & MCMX & CCSMN & CCSMX
MCMN和CCSMN这两个值大家可以忽略,一直都是0
MCMX表示Klass Metaspace以及NoKlass Metaspace两者总共的reserved的内存大小,比如默认情况下Klass Metaspace是通过CompressedClassSpaceSize这个参数来reserved 1G的内存,NoKlass Metaspace默认reserved的内存大小是2* InitialBootClassLoaderMetaspaceSize
CCSMX表示Klass Metaspace reserved的内存大小
综上所述,其实看metaspace最主要的还是看MC,MU,CCSC,CCSU这几个具体的大小来判断metaspace到底用了多少更靠谱
本来还想写metaspace内存分配和GC的内容,不过那块说起来又是一个比较大的话题,因为那块大家看起来可能会比较枯燥,有机会再写
原文链接:JVM源码分析之Metaspace解密
[转帖]【JVM】JVM源码分析之Metaspace解密的更多相关文章
- JVM源码分析之Metaspace解密
概述 metaspace,顾名思义,元数据空间,专门用来存元数据的,它是jdk8里特有的数据结构用来替代perm,这块空间很有自己的特点,前段时间公司这块的问题太多了,主要是因为升级了中间件所 ...
- Jvm(jdk8)源码分析1-java命令启动流程详解
JDK8加载源码分析 1.概述 现在大多数互联网公司都是使用java技术体系搭建自己的系统,所以对java开发工程师以及java系统架构师的需求非常的多,虽然普遍的要求都是需要熟悉各种java开发框架 ...
- 《JVM G1源码分析和调优》读书笔记
GC的相关算法与JVM的垃圾收集器 GC的相关算法 分代管理 复制算法 标记清除 标记压缩 JVM垃圾收集器 P242 表11-1 不同类型垃圾回收期比较 串行收集器 Serial. Serial G ...
- JVM源码分析之SystemGC完全解读
JVM源码分析之SystemGC完全解读 概述 JVM的GC一般情况下是JVM本身根据一定的条件触发的,不过我们还是可以做一些人为的触发,比如通过jvmti做强制GC,通过System.gc触发,还可 ...
- JVM源码分析之一个Java进程究竟能创建多少线程
JVM源码分析之一个Java进程究竟能创建多少线程 原创: 寒泉子 你假笨 2016-12-06 概述 虽然这篇文章的标题打着JVM源码分析的旗号,不过本文不仅仅从JVM源码角度来分析,更多的来自于L ...
- JVM源码分析之堆外内存完全解读
JVM源码分析之堆外内存完全解读 寒泉子 2016-01-15 17:26:16 浏览6837 评论0 阿里技术协会 摘要: 概述 广义的堆外内存 说到堆外内存,那大家肯定想到堆内内存,这也是我们 ...
- 别翻了,这篇文章绝对让你深刻理解java类的加载以及ClassLoader源码分析【JVM篇二】
目录 1.什么是类的加载(类初始化) 2.类的生命周期 3.接口的加载过程 4.解开开篇的面试题 5.理解首次主动使用 6.类加载器 7.关于命名空间 8.JVM类加载机制 9.双亲委派模型 10.C ...
- JVM源码分析之MetaspaceSize和MaxMetaspaceSize的区别
JVM加载类的时候,需要记录类的元数据,这些数据会保存在一个单独的内存区域内,在Java 7里,这个空间被称为永久代(Permgen),在Java 8里,使用元空间(Metaspace)代替了永久代. ...
- JVM源码分析-JVM源码编译与调试
要分析JVM的源码,结合资料直接阅读是一种方式,但是遇到一些想不通的场景,必须要结合调试,查看执行路径以及参数具体的值,才能搞得明白.所以我们先来把JVM的源码进行编译,并能够使用GDB进行调试. 编 ...
- JVM源码分析之警惕存在内存泄漏风险的FinalReference(增强版)
概述 JAVA对象引用体系除了强引用之外,出于对性能.可扩展性等方面考虑还特地实现了四种其他引用:SoftReference.WeakReference.PhantomReference.FinalR ...
随机推荐
- 再获殊荣!华为云GaussDB喜提“科技进步一等奖”
摘要:近日,中国电子学会科学技术奖励大会颁发了2021-2022年度中国电子学会科学技术奖获奖项目,华为云主导的"GaussDB智能云原生分布式数据库"项目荣获"科技进步 ...
- 论文复现丨基于ModelArts进行图像风格化绘画
摘要:这个 notebook 基于论文「Stylized Neural Painting, arXiv:2011.08114.」提供了最基本的「图片生成绘画」变换的可复现例子. 本文分享自华为云社区& ...
- 火山引擎 DataTester:构建增长闭环,3-5 人即可搭建企业增长团队
更多技术交流.求职机会,欢迎关注字节跳动数据平台微信公众号,回复[1]进入官方交流群 增长是一个老生常谈的话题,对许多企业而言这个词都很熟悉,但在实践过程中仍然有很多的疑问,比如指标体系应该怎么搭建? ...
- Solon2 接口开发: 了解 LoadBalance
上一文的代码 HttpUtils.http(sevName, ctx.path()) (来自 "solon.cloud.httputils" 插件的工具类),内部是通过 sevNa ...
- 7z压缩测试
注意: CompressionLevel 选择
- 提供免费 TPU 的 ControlNet 微调活动来啦
相信大家已经感受到 AI 绘画的魅力,多多少少也可以自称半个「prompt 小专家」了,而在 AI 绘画的时候 Stable Diffusion 也会出现一些小瑕疵,比如 AI 不是灵魂画「手」,还有 ...
- mit6.s081 lab1:Unix Utilities
1 sleep(easy) 要求:为 xv6实现 UNIX 程序睡眠; 睡眠需要暂停一段用户指定的时间.刻度是由 xv6内核定义的时间概念,即定时器芯片两次中断之间的时间.解决的程序应该在 user/ ...
- 【django-vue】七牛云上传视频 搜索接口 支付宝sdk二次封装 下单接口 前端支付页面 支付成功回调接口
目录 上节回顾 课程详情接口 choice字段 今日内容 1 文件存储 1.1 七牛云上传文件 2 搜索导航栏 2.1 Header.vue 3 搜索接口 4 搜索页面 5 支付宝支付介绍 5.1 支 ...
- 图标闪烁CSS
图标闪烁CSS代码 <!DOCTYPE html> <html> <head> <style> #markerDiv { position: absol ...
- LiveData的用法
一.实时数据LiveData 在上一节中,我们学习了ViewModel,了解到ViewModel的主要作用是存放页面所需要的各种数据.我们在示例代码中定义了接口,当数据发生变化的时候,采用接口的方式实 ...