题目描述

Farmer John wants the cows to prepare for the county jumping competition, so Bessie and the gang are practicing jumping over hurdles. They are getting tired, though, so they want to be able to use as little energy as possible to jump over the hurdles.

Obviously, it is not very difficult for a cow to jump over several very short hurdles, but one tall hurdle can be very stressful. Thus, the cows are only concerned about the height of the tallest hurdle they have to jump over.

The cows' practice room has \(N (1 ≤ N ≤ 300) stations\), conveniently labeled \(1..N\). A set of \(M (1 ≤ M ≤ 25,000)\) one-way paths connects pairs of stations; the paths are also conveniently labeled \(1..M\). Path i travels from station Si to station Ei and contains exactly one hurdle of height \(H_i\) (\(1 ≤ H_i ≤ 1,000,000\)). Cows must jump hurdles in any path they traverse.

The cows have \(T\) (1 ≤ \(T\) ≤ 40,000) tasks to complete. Task \(i\) comprises two distinct numbers, Ai and Bi (\(1 ≤ A_i ≤ N\);$ 1 ≤ B_i ≤ N$), which connote that a cow has to travel from station \(A_i\) to station \(B_i\) (by traversing over one or more paths over some route). The cows want to take a path the minimizes the height of the tallest hurdle they jump over when traveling from \(A_i\) to \(B_i\) . Your job is to write a program that determines the path whose tallest hurdle is smallest and report that height.

输入格式

* Line 1: Three space-separated integers: N, M, and T

* Lines 2..M+1: Line i+1 contains three space-separated integers: \(S_i\) , \(E_i\) , and \(H_i\)

* Lines M+2..M+T+1: Line i+M+1 contains two space-separated integers that describe task i: \(A_i\) and \(B_i\)

输出格式

* Lines \(1..T\): Line \(i\) contains the result for task \(i\) and tells the smallest possible maximum height necessary to travel between the stations. Output -1 if it is impossible to travel between the two stations.

5 6 3
1 2 12
3 2 8
1 3 5
2 5 3
3 4 4
2 4 8
3 4
1 2
5 1

样例输出 #1

4
8
-1

方法类似最短路。首先可以用floyd预处理出两点间路径最大值的最小值(也就是以最大值作为更新Floyd的过程),然后回答询问即可。

#include<bits/stdc++.h>
using namespace std;
const int N=305;
int n,m,t,u,v,w;
int dp[N][N];
int main()
{
memset(dp,0x7f,sizeof(dp));
scanf("%d%d%d",&n,&m,&t);
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&u,&v,&w);
dp[u][v]=min(dp[u][v],w);
}
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
dp[i][j]=min(dp[i][j],max(dp[i][k],dp[k][j]));
while(t--)
{
scanf("%d%d",&u,&v);
if(dp[u][v]>1000000)
printf("-1\n");
else
printf("%d\n",dp[u][v]);
}
return 0;
}

优化1:可以将Floyd改为跑n遍Dijkstra,因为一个位置如果现在是最小的,那么别的点再走一条边取一个max最多也就会更这个位置一样,所以dijkstra的贪心仍然符合。

优化2:参考货车运输

[USACO2007NOVS] Cow Hurdles S的更多相关文章

  1. BZOJ 1641: [Usaco2007 Nov]Cow Hurdles 奶牛跨栏( floyd )

    直接floyd.. ---------------------------------------------------------------------------- #include<c ...

  2. 1641: [Usaco2007 Nov]Cow Hurdles 奶牛跨栏

    1641: [Usaco2007 Nov]Cow Hurdles 奶牛跨栏 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 424  Solved: 272 ...

  3. bzoj1641 / P2888 [USACO07NOV]牛栏Cow Hurdles

    P2888 [USACO07NOV]牛栏Cow Hurdles Floyd $n<=300$?果断Floyd 给出核心式,自行体会 $d[i][j]=min(d[i][j],max(d[i][k ...

  4. POJ 3615 Cow Hurdles(最短路径flyod)

    Cow Hurdles Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9337   Accepted: 4058 Descr ...

  5. Luogu P2888 [USACO07NOV]牛栏Cow Hurdles

    题目描述 Farmer John wants the cows to prepare for the county jumping competition, so Bessie and the gan ...

  6. 洛谷 P2888 [USACO07NOV]牛栏Cow Hurdles

    题目戳 题目描述 Farmer John wants the cows to prepare for the county jumping competition, so Bessie and the ...

  7. OJ 21651::Cow Hurdles(佛罗一德的变式)

    Description Farmer John wants the cows to prepare for the county jumping competition, so Bessie and ...

  8. 洛谷P2888 [USACO07NOV]牛栏Cow Hurdles

    题目描述 Farmer John wants the cows to prepare for the county jumping competition, so Bessie and the gan ...

  9. 【poj3615】 Cow Hurdles

    http://poj.org/problem?id=3615 (题目链接) 题意 给出一张有向图,求从u到v最大边最小的路径的最大边.→_→不会说话了.. Solution 好久没写Floyd了,水一 ...

  10. BZOJ 1641: [Usaco2007 Nov]Cow Hurdles 奶牛跨栏

    Description Farmer John 想让她的奶牛准备郡级跳跃比赛,贝茜和她的伙伴们正在练习跨栏.她们很累,所以她们想消耗最少的能量来跨栏. 显然,对于一头奶牛跳过几个矮栏是很容易的,但是高 ...

随机推荐

  1. 《深入理解Java虚拟机》读书笔记:方法调用

      方法调用并不等同于方法执行,方法调用阶段唯一的任务就是确定被调用方法的版本(即调用哪一个方法),暂时还不涉及方法内部的具体运行过程.在程序运行时,进行方法调用是最普遍.最频繁的操作,但前面已经讲过 ...

  2. 正则表达式快速入门一:正则表达式(regex)基本语法及概念

    Regex quickstart :正则表达式快速入门 author: wclsn reference quick start 如果想要了解正则表达式的基本概念且英文ok的话,完全可以从我上面所附网站 ...

  3. 在同一个k8s集群中部署多套nginx-controller

    1.nginx-controller部署请参考我的另一篇博客 nginx Ingress Controller Packaged by Bitnami 2.修改values.yaml 不通contro ...

  4. maven缺失ojdbc6解决方法(手动安装ojdbc6)

    maven缺失ojdbc6解决方法(手动安装ojdbc6) 1. 首先下载ojdbc6jar包 jar下载地址一(需登录) jar下载地址二(直接下载) 2. 进入到jar包所在文件夹,执行cmd命令 ...

  5. c语言代码练习11

    //1-100数字中9的数量 #define _CRT_SECURE_NO_WARNINGS 1#include <stdio.h> int main(){ int x = 0; int ...

  6. 10.4 认识Capstone反汇编引擎

    Capstone 是一款开源的反汇编框架,目前该引擎支持的CPU架构包括x86.x64.ARM.MIPS.POWERPC.SPARC等,Capstone 的特点是快速.轻量级.易于使用,它可以良好地处 ...

  7. 使用 Helm 管理应用的一些 Tips

    背景 Helm 是一个 Kubernetes 的包管理工具,有点类似于 Mac 上的 brew,Python 中的 PIP:可以很方便的帮我们直接在 kubernetes 中安装某个应用. 比如我们可 ...

  8. King's Tour 题解

    King's Tour 题面大意 在 \(n\times m\) 的网格中构造一种从 \((1,1)\) 走到 \((a,b)\) 的方案,要求经过所有格子恰好一次,格子之间八联通. 思路分析 模拟赛 ...

  9. hammer.js学习

    demo:https://github.com/fei1314/HammerJs/tree/master 知识点: hammer--手势识别:点击.长按.滑动.拖动.旋转.缩放 方法: tap 快速的 ...

  10. JS个人总结(1)

    1. html页面引入js文件优先使用引入外部js文件. 2. 如果在html页面里使用<script></script>,则把js内容放在html内容下面,也就是</b ...