NYOJ 1091 超大01背包(折半枚举)
这道题乍一看是普通的01背包,最最基础的,但是仔细一看数据,发现普通的根本没法做,仔细观察数组发现n比较小,利用这个特点将它划分为前半部分和后半部分这样就好了,当时在网上找题解,找不到,后来在挑战程序设计上找到了这个题,就拿来引用一下
挑选物品的方法总从2^n中,直接枚举肯定不行,因为n最大为40,但是如果n为20就可以了,这时候就要用到折半枚举,先枚举前一半,在枚举后一半。先把前把部分的选取方法对应的重量和价值总和记为w1, v1,这样后半部分寻找w2 <= W - w1时 使v2最大的选取方法就好了。
因此,我们要思考从枚举得到的(w2, v2)的集合中高效寻找max{v2|w2<=W'}的方法。首先,显然我们可以排除所有w2[i] <= w2[j]并且v2[i] >= v2[j] 的 j。 这一点可以按照w2,v2的字典序排列后做到。此后剩余的元素都满足w2[i] < w2[j] , v2[i] < v2[j], 要计算max{v2|w2<=W'}的话,只要寻找满足w2[i]<=W'的最大的i就可以了。这可以利用二分搜索完成。剩余的元素个数为M的话,一次搜索要用log(M)的时间,可以解决
代码如下:
方法一(折半枚举):
#include <iostream>
#include <algorithm>
#include <cstdio>
#define Max(a,b) a>b?a:b
#define INF 10000000000000000
using namespace std;
typedef long long LL;
const int MAX = ;
LL weight[MAX], value[MAX];
LL W;
pair<LL, LL> ps[ << (MAX / )];
int n;
void slove()
{
//枚举前半部分
int n2 = n / ;
for (int i = ; i < << n2; i++)//前半部分的枚举总数为 2^(n/2);
{
LL sw = , sv = ;
//每种结果选取特定的价值和重量(i.e 一共2个东西,就一共四种情况,都不选,选第一个,选第二个,都选)
for (int j = ; j < n2; j++)
{
if (i >> j & )
{
sw += weight[j];
sv += value[j];
}
}
ps[i] = make_pair(sw, sv);//加入到ps数组中
}
//对ps排序
sort(ps, ps + ( << n2));
//ps 去重
int m = ;
for (int i = ; i < << n2; i++)
if (ps[m - ].second < ps[i].second)
ps[m++] = ps[i];
LL res = ;//保存结果
//枚举后半部分, 并且找到最优解
for (int i = ; i < << (n - n2); i++)//同样枚举的总个数
{
LL sw = , sv = ;
for (int j = ; j < n - n2; j++)//和前半部分的一样
{
if (i >> j & )
{
sw += weight[n2 + j];
sv += value[n2 + j];
}
}
if (sw <= W)//加个判断求解最大价值,只有小于背包容量的时候
{
LL tv = (lower_bound(ps, ps + m, make_pair(W - sw, INF)) - )->second;//找到前半部分对应的value
res = Max(res, sv + tv);
}
}
printf("%lld\n", res);
} int main()
{
while (~scanf("%d %lld", &n, &W))
{
for (int i = ; i < n; i++)
scanf("%lld %lld", &weight[i], &value[i]);
slove();
}
return ;
}
这个题也可以用搜做来做,搜索反而来的更快,因为n比较小
方法二(搜索):
#include <stdio.h>
#include <string.h>
#define Max(a, b) a > b ? a : b
const int MAX = ;
long long weight[MAX], value[MAX], sw[MAX], sv[MAX];
long long W, n, ans;
//i表示当前取到第n-i个,cnt 表示当前的总value, w当前背包剩余的空间
void dfs(int i, long long cnt, long long w)
{
if (i == )//取到最后
{
ans = Max(ans, cnt);
return;
}
if (w == || cnt + sv[i] < ans)//背包满或者当前总的加上这个前i个的总价值小于当前的总value,这步是剪枝
return ;
if (w >= sw[i])//因为是从上往下找的,所以只要当前容量能装下前i个的和,所以这时一定是最大的
{
cnt += sv[i];
ans = Max(ans, cnt);
w = ;
return ;
}
if (w > weight[i])//深搜两种状态
dfs(i - , cnt + value[i], w - weight[i]);//相当于01背包中的两种状态
dfs(i - , cnt, w);
}
int main()
{
while (~scanf("%d %lld", &n, &W))
{
memset(sw, , sizeof(weight));
memset(sv, , sizeof(value));
ans = ;
for (int i = ; i <= n; i++)
{
scanf("%lld %lld", &weight[i], &value[i]);
sw[i] = sw[i - ] + weight[i];
sv[i] = sv[i - ] + value[i];
}
dfs(n, , W);
printf("%lld\n", ans);
} return ;
}
NYOJ 1091 超大01背包(折半枚举)的更多相关文章
- nyoj 1091 还是01背包(超大数dp)
nyoj 1091 还是01背包 描述 有n个重量和价值分别为 wi 和 vi 的物品,从这些物品中挑选总重量不超过W的物品,求所有挑选方案中价值总和的最大值 1 <= n <=40 1 ...
- CSU OJ PID=1514: Packs 超大背包问题,折半枚举+二分查找。
1514: Packs Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 61 Solved: 4[Submit][Status][Web Board] ...
- Nyoj 三国志(dijkstra+01背包)
描述 <三国志>是一款很经典的经营策略类游戏.我们的小白同学是这款游戏的忠实玩家.现在他把游戏简化一下,地图上只有他一方势力,现在他只有一个城池,而他周边有一些无人占的空城,但是这些空城中 ...
- hdu 5887 Herbs Gathering (dfs+剪枝 or 超大01背包)
题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=5887 题解:这题一看像是背包但是显然背包容量太大了所以可以考虑用dfs+剪枝,贪心得到的不 ...
- E - Knapsack 2 题解(超大01背包)
题目链接 题目大意 给你一n(n<=100)个物品,物品价值最大为1e3,物品体积最多为1e9,背包最大为1e9 题目思路 如果按照平常的背包来算那么时间复杂度直接O(1e11) 这个你观察就发 ...
- POJ 1837 Balance(01背包变形, 枚举DP)
Q: dp 数组应该怎么设置? A: dp[i][j] 表示前 i 件物品放入天平后形成平衡度为 j 的方案数 题意: 有一个天平, 天平的两侧可以挂上重物, 给定 C 个钩子和G个秤砣. 2 4 - ...
- 中南林业大学校赛 I 背包问题 ( 折半枚举 || 01背包递归写法 )
题目链接 题意 : 中文题 分析 : 价值和重量都太过于大,所以采用折半枚举的方法,详细可以看挑战的超大背包问题 由于 n <= 30 那么可以不必直接记录状态来优化,面对每个用例 直接采用递 ...
- (容量超大)or(容量及价值)超大背包问题 ( 折半枚举 || 改变 dp 意义 )
题意 : 以下两个问题的物品都只能取有且只有一次 ① 给你 N 个物品,所有物品的价值总和不会超过 5000, 单个物品的价格就可达 10^10 ,背包容量为 B ② 给你 N (N ≤ 40 ) 个 ...
- nyoj 203 三国志 dijkstra+01背包
题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=203 思路:先求点0到每个点的最短距离,dijkstra算法,然后就是01背包了 我奇怪的 ...
随机推荐
- 合(析)取范式转主合(析)取范式--》Java实现
这次老师布置了如下上机作业,不限语言.思前想后,问了几个大神,说了一堆不知道什么鬼的算法名称.... 经过一番百度,发现Java可以包含库然后使用JavaScript的一些函数,其中eval() 函数 ...
- Tweet button with a callback – How to?
原文: http://jaspreetchahal.org/tweet-button-with-a-callback-how-to/ 两种方式:1. 原生的button <a href=&quo ...
- 试用ubuntu-12.04.3-desktop-amd64(二)
首先说明,采用主机+虚拟机+ubuntu的形式,更具体的则为Win7-64bit + VMWare + ubuntu-12.04.3-desktop-amd64 进入ubuntu后首先考虑到的就是怎么 ...
- 关于表单的jQuery练习
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/stri ...
- ggts下载地址
地址:http://spring.io/tools/ggts See All Versions可以下载更多版本,里面包含安装版和解压版
- 我牵头,你做事——C#委托实践
我牵头,你做事——C#委托实践一 2007-09-05 23:54:54 标签:委托 原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http ...
- js在html中的加载执行顺序
1.加载顺序:引入标记<script />的出现顺序,依次加载 页面上的Javascript代码是HTML文档的一部分,所以Javascript在页面装载时执行的顺序就是其引入标记< ...
- python 安装PyV8 和 lxml
近来在玩python爬虫,需要使用PyV8模块和lxml模块.但是执行pip install xx 或者easy_install xx 指令都会提示一些错误.这些错误有些是提示pip版本过低或者缺少v ...
- Python里的拷贝=====》很容易错误的
不能直接用 = 复制: import copy a = [1, 2, 3, 4, ['a', 'b']] #原始对象 b = a #赋值,传对象的引用 c = copy.copy(a) #对象拷贝,浅 ...
- JS之路——常用正则表达式
整数或者小数:^[0-9]+\.{0,1}[0-9]{0,2}$只能输入数字:"^[0-9]*$".只能输入n位的数字:"^\d{n}$".只能输入至少n位的数 ...