DIV2 1000pt

题意:给定整数n和r,求有多少个这样的数列,a1,a2...an,使得a1 + a2 +...+an = a1|a2|a3|...|an,(按位或)。输出这样数列的个数mod 1000000009。

   n <= 10,r <= 15000。

解法:先按位分析这道题,若将a1,a2..an转化成二进制形式并对齐如下,则可将题目转化为求每一列最多含有一个1,每一行所对应的数小等于r的矩阵有多少个。

                       

   这样的话,下意识地想到用状态压缩的DP来做,但是这样做的时间复杂度为O(10×15000×15000),不能接受。最后我也没想出更好的方法,只好看了题解。

   对于某一行,若要使得它对应的数小于r,只需要在某一列,r的二进制形式为1,它为0;在这一列之前, 该行所有值与r相同;在这之后,该行每一列可以为任意值。

   设数组d[i][j]表示从左向右扫描的情况下,从第i位扫到第0位,已经有(n-j)个数小于r的情况下,共有多少个符合题意的数列。具体状态转移方程可以看我得代码,详细的注解见官方题解的代码,http://apps.topcoder.com/wiki/display/tc/SRM+508

tag:dp, good

 // BEGIN CUT HERE
/*
* Author: plum rain
* score :
*/
/* */
// END CUT HERE
#line 11 "YetAnotherORProblem2.cpp"
#include <sstream>
#include <stdexcept>
#include <functional>
#include <iomanip>
#include <numeric>
#include <fstream>
#include <cctype>
#include <iostream>
#include <cstdio>
#include <vector>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <cstdlib>
#include <set>
#include <queue>
#include <bitset>
#include <list>
#include <string>
#include <utility>
#include <map>
#include <ctime>
#include <stack> using namespace std; #define CLR(x) memset(x, 0, sizeof(x))
#define CLR1(x) memset(x, -1, sizeof(x))
#define PB push_back
#define SZ(v) ((int)(v).size())
#define zero(x) (((x)>0?(x):-(x))<eps)
#define out(x) cout<<#x<<":"<<(x)<<endl
#define tst(a) cout<<#a<<endl
#define CINBEQUICKER std::ios::sync_with_stdio(false) typedef vector<int> VI;
typedef vector<string> VS;
typedef vector<double> VD;
typedef long long int64;
typedef pair<int, int> pii; const double eps = 1e-;
const double PI = atan(1.0)*;
const int maxint = ;
const int mod = ; int r, n;
int64 d[][]; int64 rec (int t, int num)
{
if (t == -) return ; int64 &ret = d[t][num];
int tmp = r & ( << t); if (ret != -) return ret; if (num == n){
if (tmp)
return ret = (rec(t-, ) + n * rec(t-, )) % mod;
return ret = rec(t-, num);
}
if (num == ){
if (tmp)
return ret = (rec(t-, ) + rec(t-, ) + (n-) * rec(t-, )) % mod;
return ret = n * rec(t-, ) % mod;
}
return ret = (n+) * rec(t-, ) % mod;
} class YetAnotherORProblem2
{
public:
int countSequences(int N, int R){
r = R; n = N;
CLR1 (d);
return (int)((rec(, n)+mod) % mod);
} // BEGIN CUT HERE
public:
void run_test(int Case) { if ((Case == -) || (Case == )) test_case_0(); if ((Case == -) || (Case == )) test_case_1(); if ((Case == -) || (Case == )) test_case_2(); if ((Case == -) || (Case == )) test_case_3(); }
private:
template <typename T> string print_array(const vector<T> &V) { ostringstream os; os << "{ "; for (typename vector<T>::const_iterator iter = V.begin(); iter != V.end(); ++iter) os << '\"' << *iter << "\","; os << " }"; return os.str(); }
void verify_case(int Case, const int &Expected, const int &Received) { cerr << "Test Case #" << Case << "..."; if (Expected == Received) cerr << "PASSED" << endl; else { cerr << "FAILED" << endl; cerr << "\tExpected: \"" << Expected << '\"' << endl; cerr << "\tReceived: \"" << Received << '\"' << endl; } }
//void test_case_0() { int Arg0 = 2; int Arg1 = 15000; int Arg2 = 4628299; verify_case(0, Arg2, countSequences(Arg0, Arg1)); }
void test_case_0() { int Arg0 = ; int Arg1 = ; int Arg2 = ; verify_case(, Arg2, countSequences(Arg0, Arg1)); }
void test_case_1() { int Arg0 = ; int Arg1 = ; int Arg2 = ; verify_case(, Arg2, countSequences(Arg0, Arg1)); }
void test_case_2() { int Arg0 = ; int Arg1 = ; int Arg2 = ; verify_case(, Arg2, countSequences(Arg0, Arg1)); }
void test_case_3() { int Arg0 = ; int Arg1 = ; int Arg2 = ; verify_case(, Arg2, countSequences(Arg0, Arg1)); } // END CUT HERE }; // BEGIN CUT HERE
int main()
{
// freopen( "a.out" , "w" , stdout );
YetAnotherORProblem2 ___test;
___test.run_test(-);
return ;
}
// END CUT HERE

SRM 508(2-1000pt)的更多相关文章

  1. SRM 508 DIV1 500pt(DP)

    题目简述 给定一个大小为 n的序列(n<=10)R,要求你计算序列A0, A1, ..., AN-1的数量,要求A序列满足A0 + A1 + ... + AN-1 = A0 | A1 | ... ...

  2. SRM DIV1 500pt DP

    SRM 501 DIV1 500pt SRM 502 DIV1 500pt SRM 508 DIV1 500pt SRM 509 DIV1 500pt SRM 511 DIV1 500pt SRM 5 ...

  3. TC250专场

    SRM 623 DIV2 1000pt 题意:给出一个最多50*50的矩阵,每个单元可能为'.'.'P'.'A','.'代表空地,你每次操作可以把一个P或者A拿到空地上,求一个最大的含有相同字符的矩形 ...

  4. SRM149 - SRM150(少SRM150-DIV1-LV3)

    SRM 149 DIV2 1000pt 题意: 对于n个人,第i人有pi的钱.将他们分成不超过四个组,每组统一交费x,对每个人,若他拥有的钱超过x则交费,否则不交费.问最多能使这些人交多少钱. 1&l ...

  5. Topcoder 好题推荐

    SRM SRM147 DIV1 1000pt DP SRM148 DIV1 1100pt 递归 SRM149 DIV1 1000pt math SRM150 DIV1 500pt DP SRM469 ...

  6. SRM144 - SRM 148(少144-DIV1-LV3,147-DIV2-LV3)

    SRM 144 DIV 1 500pt tag:组合 题意:彩票中奖.给定n, m,从1-n中选择m个数组成数列a1, a2, a3...am.对于数列{am}分别满足以下条件的概率: (1)数列所有 ...

  7. 记第一次TopCoder, 练习SRM 583 div2 250

    今天第一次做topcoder,没有比赛,所以找的最新一期的SRM练习,做了第一道题. 题目大意是说 给一个数字字符串,任意交换两位,使数字变为最小,不能有前导0. 看到题目以后,先想到的找规律,发现要 ...

  8. SRM 513 2 1000CutTheNumbers(状态压缩)

    SRM 513 2 1000CutTheNumbers Problem Statement Manao has a board filled with digits represented as St ...

  9. SRM 510 2 250TheAlmostLuckyNumbersDivTwo(数位dp)

    SRM 510 2 250TheAlmostLuckyNumbersDivTwo Problem Statement John and Brus believe that the digits 4 a ...

随机推荐

  1. recursive - simple screenshot but detail principle.

    the code below demonstates the principle of the'recursive-call' that the programing beginner may be ...

  2. oracle使用LEFT JOIN关联产生的问题在查询结果中使用CASE WHEN 无法判断

    oracle使用LEFT JOIN关联产生的问题在查询结果中使用CASE WHEN 无法判断 查询方式一: SELECT CASE WHEN (SELECT CAST(SUM(CASE ) THEN ...

  3. IOS学习--UILable使用手册(20150120)

    第一步:创建一个UILable对象 UILabel *lable = [[UILabel alloc]initWithFrame:CGRectMake(, , , )]; 第二步:设置对象的各种属性 ...

  4. Python:函数定义

    #!/usr/bin/python3 #函数 def add(a,b): return a+b print("add(2,5) = ",add(2,5)) def add2(a,b ...

  5. mongo db安装和php,python插件安装

    安装mongodb 1.下载,解压mongodb(下载解压目录为/opt) 在/opt目录下执行命令 wget fastdl.mongodb.org/linux/mongodb-linux-x86_6 ...

  6. xml程序 个人练习1

    package cn.gdpe.xml2; import java.io.File;import java.io.FileOutputStream;import java.util.List; imp ...

  7. NewRowNeeded和UserAddedRow事件以及RowsAdded的区别使用

    NewRowNeeded事件当 VirtualMode 属性为 true 时,将在用户定位到 DataGridView 底部的新行时发生,适合给新行建立一些默认数据和按规则应该产生的数据,但此时不推荐 ...

  8. WWDC2014之App Extensions学习笔记

    一.关于App Extensions extension是iOS8新开放的一种对几个固定系统区域的扩展机制,它可以在一定程度上弥补iOS的沙盒机制对应用间通信的限制. extension的出现,为用户 ...

  9. DataNode工作原理(四)

    DataNode的作用:提供真实文件数据的存储服务.以文件块进行存储. 文件块(block):最基本的存储单位.对文件内容而言,一个文件的长度大小是size,那么从文件的0偏移开始,按照固定的大小,顺 ...

  10. map和lambda

    同事问我python里,比如一个列表: a = ['1', '2', '3'] 如何变成: b = ['1x', '2x', '3x'] 好吧,果断不知道-原来pthon中有map函数,查看帮助文档: ...