SPOJ-COT-Count on a tree(树上路径第K小,可持久化线段树)
题意:
求树上A,B两点路径上第K小的数
分析:
同样是可持久化线段树,只是这一次我们用它来维护树上的信息。
我们之前已经知道,可持久化线段树实际上是维护的一个前缀和,而前缀和不一定要出现在一个线性表上。
比如说我们从一棵树的根节点进行DFS,得到根节点到各节点的距离dist[x]——这是一个根-x路径上点与根节点距离的前缀和。
利用这个前缀和,我们可以解决一些树上任意路径的问题,比如在线询问[a,b]点对的距离——答案自然是dist[a]+dist[b]-2*dist[lca(a,b)]。
同理,我们可以利用可持久化线段树来解决树上任意路径的问题。
DFS遍历整棵树,然后在每个节点上建立一棵线段树,某一棵线段树的“前一版本”是位于该节点父亲节点fa的线段树。
利用与之前类似的方法插入点权(排序离散)。那么对于询问[a,b],答案就是root[a]+root[b]-root[lca(a,b)]-root[fa[lca(a,b)]]上的第k大。
// File Name: cot.cpp
// Author: Zlbing
// Created Time: 2013年10月09日 星期三 19时24分55秒 #include<iostream>
#include<string>
#include<algorithm>
#include<cstdlib>
#include<cstdio>
#include<set>
#include<map>
#include<vector>
#include<cstring>
#include<stack>
#include<cmath>
#include<queue>
using namespace std;
#define CL(x,v); memset(x,v,sizeof(x));
#define INF 0x3f3f3f3f
#define LL long long
#define REP(i,r,n) for(int i=r;i<=n;i++)
#define RREP(i,n,r) for(int i=n;i>=r;i--)
const int MAXN=1e5+;
const int POW=;
int num[MAXN],hash[MAXN];
int ls[MAXN*],rs[MAXN*];
int sum[MAXN*];
int root[MAXN];
vector<int> G[MAXN];
int d[MAXN];
int p[MAXN][POW];
int tot;
int f[MAXN];
void build(int l,int r,int& rt)
{
rt=++tot;
sum[rt]=;
if(l>=r)return;
int m=(l+r)>>;
build(l,m,ls[rt]);
build(m+,r,rs[rt]);
}
void update(int last,int p,int l,int r,int &rt)
{
rt=++tot;
ls[rt]=ls[last];
rs[rt]=rs[last];
sum[rt]=sum[last]+;
if(l>=r)return ;
int m=(l+r)>>;
if(p<=m)update(ls[last],p,l,m,ls[rt]);
else update(rs[last],p,m+,r,rs[rt]);
}
int query(int left_rt,int right_rt,int lca_rt,int lca_frt,int l,int r,int k)
{
if(l>=r)return l;
int m=(l+r)>>;
int cnt=sum[ls[right_rt]]+sum[ls[left_rt]]-sum[ls[lca_rt]]-sum[ls[lca_frt]];
if(k<=cnt)
return query(ls[left_rt],ls[right_rt],ls[lca_rt],ls[lca_frt],l,m,k);
else
return query(rs[left_rt],rs[right_rt],rs[lca_rt],rs[lca_frt],m+,r,k-cnt);
}
void dfs(int u,int fa,int cnt)
{
f[u]=fa;
d[u]=d[fa]+;
p[u][]=fa;
for(int i=;i<POW;i++)p[u][i]=p[p[u][i-]][i-]; update(root[fa],num[u],,cnt,root[u]);
for(int i=;i<(int)G[u].size();i++)
{
int v=G[u][i];
if(v==fa)continue;
dfs(v,u,cnt);
}
}
int lca(int a,int b)
{
if(d[a]>d[b])a^=b,b^=a,a^=b;
if(d[a]<d[b])
{
int del=d[b]-d[a];
for(int i=;i<POW;i++)
if(del&(<<i))b=p[b][i];
}
if(a!=b)
{
for(int i=POW-;i>=;i--)
{
if(p[a][i]!=p[b][i])
{
a=p[a][i],b=p[b][i];
}
}
a=p[a][],b=p[b][];
}
return a;
}
int main()
{
int n,m;
while(~scanf("%d%d",&n,&m))
{
REP(i,,n)
{
G[i].clear();
}
CL(d,);
CL(p,);
CL(f,);
REP(i,,n)
{
scanf("%d",&num[i]);
hash[i]=num[i];
}
tot=;
sort(hash+,hash++n);
int cnt=unique(hash+,hash+n+)-hash-;
REP(i,,n)
{
num[i]=lower_bound(hash+,hash+cnt+,num[i])-hash;
}
int a,b,c;
REP(i,,n-)
{
scanf("%d%d",&a,&b);
G[a].push_back(b);
G[b].push_back(a);
}
build(,cnt,root[]);
dfs(,,cnt);
REP(i,,m)
{
scanf("%d%d%d",&a,&b,&c);
int t=lca(a,b);
int id=query(root[a],root[b],root[t],root[f[t]],,cnt,c);
printf("%d\n",hash[id]);
}
}
return ;
}
SPOJ-COT-Count on a tree(树上路径第K小,可持久化线段树)的更多相关文章
- Count on a tree(树上路径第K小)
题目链接:https://www.spoj.com/problems/COT/en/ 题意:求树上A,B两点路径上第K小的数 思路:主席树实际上是维护的一个前缀和,而前缀和不一定要出现在一个线性表上. ...
- spoj COT - Count on a tree (树上第K小 LCA+主席树)
链接: https://www.spoj.com/problems/COT/en/ 思路: 首先看到求两点之前的第k小很容易想到用主席树去写,但是主席树处理的是线性结构,而这道题要求的是树形结构,我们 ...
- Count on a tree 树上区间第K小
Count on a tree 题意:求路径 u到v上的 第k小的权重. 题解:先DFS建数, 然后对于每个节点往上跑出一颗主席树, 然后每次更新. 查询的时候, u, v, k, 找到 z = l ...
- SPOJ COT Count on a tree(树上主席树 + LCA 求点第k小)题解
题意:n个点的树,每个点有权值,问你u~v路径第k小的点的权值是? 思路: 树上主席树就是每个点建一棵权值线段树,具体看JQ博客,LCA用倍增logn求出,具体原理看这里 树上主席树我每个点的存的是点 ...
- SPOJ - COT Count on a tree
地址:http://www.spoj.com/problems/COT/en/ 题目: COT - Count on a tree #tree You are given a tree with N ...
- SPOJ 10628 Count on a tree(Tarjan离线 | RMQ-ST在线求LCA+主席树求树上第K小)
COT - Count on a tree #tree You are given a tree with N nodes.The tree nodes are numbered from 1 to ...
- BZOJ 2588: Spoj 10628. Count on a tree [树上主席树]
2588: Spoj 10628. Count on a tree Time Limit: 12 Sec Memory Limit: 128 MBSubmit: 5217 Solved: 1233 ...
- BZOJ 2588: Spoj 10628. Count on a tree 树上跑主席树
2588: Spoj 10628. Count on a tree Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/J ...
- spoj COT - Count on a tree(主席树 +lca,树上第K大)
您将获得一个包含N个节点的树.树节点的编号从1到Ñ.每个节点都有一个整数权重. 我们会要求您执行以下操作: uvk:询问从节点u到节点v的路径上的第k个最小权重 输入 在第一行中有两个整数Ñ和中号.( ...
随机推荐
- CenOs安装中文输入法
http://jingyan.baidu.com/album/d8072ac4434666ec95cefda1.html?picindex=2 查看链接
- php strtotime函数服务器和本地不相同
遇到过一种情况strtotime 在本地和服务器不相同 服务器返回的是-1 strtotime($sa_sagyo_ymd."23:59:59") 如果这样用不了,就只能换一种写法 ...
- SQL SERVER将某一列字段中的某个值替换为其他的值 分类: MSSQL 2014-11-05 13:11 67人阅读 评论(0) 收藏
SQL SERVER将某一列字段中的某个值替换为其他的值 UPDATE 表名 SET 列名 = REPLACE(列名 ,'贷','袋') SQL SERVER"函数 replace 的参数 ...
- 在Android上模拟登录广工正方教务系统查询成绩
这是在博客园里开博以来写的第一篇博客. 因为之前看过很多人都有发过关于模拟登录正方软件获取数据的文章,自己觉得挺好玩的便也去动手一做,开始还以为挺难的,但实际做起来还蛮简单的,当然其中还有些小插曲. ...
- SQL Server2008 附加数据库失败 错误代码5120
由于目录权限不够导致 ,解决办法:将文件所在的文件夹增加everyone 并且赋予完全控制权限问题解决
- C#调用ActiveX控件
背景:最近项目中需要用到ActiveX控件,项目是在.Net平台下开发的.因此就直接在项目中添加了对ActiveX控件的引用,添加引用成功.在代码中实例化类的实例也没有问题,但在调用其方法或属性时总是 ...
- hibernate逆向工程生成的实体映射需要修改
根据实际情况进行修改,主要2处,注释的位置<!-- 把catalog="platform"删掉 -->,<!-- 替换为native --> <? ...
- C# 控制台程序 托盘图标 事件响应
static void Main(string[] args) { NotifyIconHelper ni = new NotifyIconHelper(); NotifyIconHelper.Sho ...
- jQuery 杂项方法
jQuery 杂项方法 方法 描述 data() 向被选元素附加数据,或者从被选元素获取数据 each() 为每个匹配元素执行函数 get() 获取由选择器指定的 DOM 元素 index() 从匹配 ...
- eclipse/ggts/myeclipse清除SVN用户名和密码
很多时候我们在使用eclipse/myeclipse/ggts这些开发工具进行开发的时候会有多个项目存在,不同的项目又存放在不同的svn下,需要进行svn之间的切换,如果你在创建资源库位置的时候保存了 ...