Description

You’ve just built a circuit board for your new robot, and now you need to power it. Your robot circuit consists of a number of electrical components that each require a certain amount of current to operate. Every component has a + and a − lead, which are connected on the circuit board at junctions. Current flows through the component from + to − (but note that a component does not “use up” the current: everything that comes in through the + end goes out the − end).

The junctions on the board are labeled 1, ..., N, except for two special junctions labeled + and − where the power supply terminals are connected. The + terminal only connects + leads, and the − terminal only connects − leads. All current that enters a junction from the − leads of connected components exits through connected + leads, but you are able to control how much current flows to each connected + lead at every junction (though methods for doing so are beyond the scope of this problem). Moreover, you know you have assembled the circuit in such a way that there are no feedback loops (components chained in a manner that allows current to flow in a loop).


Figure 1: Examples of two valid circuit diagrams. In (a), all components can be powered along directed paths from the positive terminal to the negative terminal. In (b), components 4 and 6 cannot be powered, since there is no directed path from junction 4 to the negative terminal.

In the interest of saving power, and also to ensure that your circuit does not overheat, you would like to use as little current as possible to get your robot to work. What is the smallest amount of current that you need to put through the + terminal (which you can imagine all necessarily leaving through the − terminal) so that every component on your robot receives its required supply of current to function?

Input

The input file will contain multiple test cases. Each test case begins with a single line containing two integers: N (0 ≤ N ≤ 50), the number of junctions not including the positive and negative terminals, and M (1 ≤ M ≤ 200), the number of components in the circuit diagram. The next M lines each contain a description of some component in the diagram. The ith component description contains three fields: pi, the positive junction to which the component is connected, ni, the negative junction to which the component is connected, and an integer Ii (1 ≤ Ii ≤ 100), the minimum amount of current required for component i to function. The junctions pi and ni are specified as either the character ‘+’ indicating the positive terminal, the character ‘-’ indicating the negative terminal, or an integer (between 1 and N) indicating one of the numbered junctions. No two components have the same positive junction and the same negative junction. The end-of-file is denoted by an invalid test case with N = M = 0 and should not be processed.

Output

For each input test case, your program should print out either a single integer indicating the minimum amount of current that must be supplied at the positive terminal in order to ensure that every component is powered, or the message “impossible” if there is no way to direct a sufficient amount of current to each component simultaneously.

Sample Input

6 10
+ 1 1
1 2 1
1 3 2
2 4 5
+ - 1
4 3 2
3 5 5
4 6 2
5 - 1
6 5 3
4 6
+ 1 8
1 2 4
1 3 5
2 4 6
3 - 1
3 4 3
0 0

Sample Output

9
impossible

Hint

For those who are electronics-inclined, imagine that you have the ability to adjust the potential on any component without altering its current requirement, or equivalently that there is an accurate variable potentiometer connected in series with each component that you can adjust. Your power supply will have ample potential for the circuit.
 
 
【分析】
  就是一个有源汇、有上下界的最小流。汇点源点连一条INF的边变成循环流,新增超级源点、超级汇点,拆边,跑最大流判满流。这题不用拆边再反过来跑一遍求最小流,因为所有边的上届都是INF。
 
代码如下:
 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
#define Maxn 1010
#define Maxm 100100
#define INF 0xfffffff char s[];
int stt,edd;
int first[Maxn],dis[Maxn];
int sum; struct node
{
int x,y,f,o,next;
}t[Maxm];int len; int mymin(int x,int y) {return x<y?x:y;} void ins(int x,int y,int f)
{
if(x==stt) sum+=f;
t[++len].x=x;t[len].y=y;t[len].f=f;
t[len].next=first[x];first[x]=len;t[len].o=len+;
t[++len].x=y;t[len].y=x;t[len].f=;
t[len].next=first[y];first[y]=len;t[len].o=len-;
} void make_edge(int x,int y,int k1,int k2)
{
ins(stt,y,k1);
ins(x,edd,k1);
ins(x,y,k2-k1);
} queue<int > q;
bool bfs(int st,int ed)
{
while(!q.empty()) q.pop();
memset(dis,-,sizeof(dis));
q.push(st);dis[st]=;
while(!q.empty())
{
int x=q.front();
for(int i=first[x];i;i=t[i].next) if(t[i].f>)
{
int y=t[i].y;
if(dis[y]==-)
{
dis[y]=dis[x]+;
q.push(y);
}
}
q.pop();
}
if(dis[ed]!=-) return ;
return ;
} int ffind(int x,int ed,int flow)
{
if(x==ed) return flow;
int now=;
for(int i=first[x];i;i=t[i].next) if(t[i].f>)
{
int y=t[i].y;
if(dis[y]==dis[x]+)
{
int a=ffind(y,ed,mymin(flow-now,t[i].f));
t[i].f-=a;
t[t[i].o].f+=a;
now+=a;
if(now==flow) break;
}
}
if(now==) dis[x]=-;
return now;
} int max_flow(int st,int ed)
{
int ans=;
while(bfs(st,ed))
{
ans+=ffind(st,ed,INF);
}
if(ans!=sum) return -;
return ans;
} int main()
{
int n,m;
while()
{
scanf("%d%d",&n,&m);
if(n==&&m==) break;
int st=n+,ed=st+;len=;
stt=ed+;edd=stt+;sum=;
memset(first,,sizeof(first));
for(int i=;i<=m;i++)
{
int x,y;
scanf("%s",s);
if(s[]=='+') x=st;
else if(s[]=='-') x=ed;
else
{
int now=;x=;
while(s[now]>=''&&s[now]<='') x=x*+s[now++]-'';
}scanf("%s",s);
if(s[]=='+') y=st;
else if(s[]=='-') y=ed;
else
{
int now=;y=;
while(s[now]>=''&&s[now]<='') y=y*+s[now++]-'';
}
int c;
scanf("%d",&c);
make_edge(x,y,c,INF);
}
int id=len+;
ins(ed,st,INF);
int now=max_flow(stt,edd);
if(now==-) printf("impossible\n");
else
{
printf("%d\n",t[id].f);
}
}
return ;
}

[POJ3801]

2016-06-13 13:12:16

【 POJ - 3801】Crazy Circuits(有源汇、上下界最小流)的更多相关文章

  1. HDU 3157 Crazy Circuits (有源汇上下界最小流)

    题意:一个电路板,上面有N个接线柱(标号1~N)   还有两个电源接线柱  +  - 然后是 给出M个部件正负极的接线柱和最小电流,求一个可以让所有部件正常工作的总电流. 析:这是一个有源汇有上下界的 ...

  2. BZOJ_2502_清理雪道_有源汇上下界最小流

    BZOJ_2502_清理雪道_有源汇上下界最小流 Description        滑雪场坐落在FJ省西北部的若干座山上. 从空中鸟瞰,滑雪场可以看作一个有向无环图,每条弧代表一个斜坡(即雪道), ...

  3. 【Loj117】有源汇上下界最小流(网络流)

    [Loj117]有源汇上下界最小流(网络流) 题面 Loj 题解 还是模板题. #include<iostream> #include<cstdio> #include< ...

  4. hdu3157有源汇上下界最小流

    题意:有源汇上下界最小流裸题,主要就是输入要用字符串的问题 #include<bits/stdc++.h> #define fi first #define se second #defi ...

  5. BZOJ 2502 清理雪道(有源汇上下界最小流)

    题面 滑雪场坐落在FJ省西北部的若干座山上. 从空中鸟瞰,滑雪场可以看作一个有向无环图,每条弧代表一个斜坡(即雪道),弧的方向代表斜坡下降的方向. 你的团队负责每周定时清理雪道.你们拥有一架直升飞机, ...

  6. BZOJ 2502 清理雪道/ Luogu P4843 清理雪道 (有源汇上下界最小流)

    题意 有一个有向无环图,求最少的路径条数覆盖所有的边 分析 有源汇上下界最小流板题,直接放代码了,不会的看dalao博客:liu_runda 有点长,讲的很好,静心看一定能看懂 CODE #inclu ...

  7. sgu176 有源汇上下界最小流

    题意:有一堆点和边,1起点,n终点,某些边有可能必须满流,要求满足条件的最小流 解法:按原图建边,满流的即上下界都是容量,但是这样按有源汇上下界可行流求出来的可能不是最小流,那么我们需要开始建边的时候 ...

  8. SGU 176 Flow construction(有源汇上下界最小流)

    Description 176. Flow construction time limit per test: 1 sec. memory limit per test: 4096 KB input: ...

  9. HDU 3157 Crazy Circuits(有源汇上下界最小流)

    HDU 3157 Crazy Circuits 题目链接 题意:一个电路板,上面有N个接线柱(标号1~N),还有两个电源接线柱 + -.给出一些线路,每一个线路有一个下限值求一个能够让全部部件正常工作 ...

  10. bzoj 2502 清理雪道 (有源汇上下界最小流)

    2502: 清理雪道 Time Limit: 10 Sec  Memory Limit: 128 MB Description        滑雪场坐落在FJ省西北部的若干座山上. 从空中鸟瞰,滑雪场 ...

随机推荐

  1. careercup-链表 2.2

    2.2 实现一个算法,找到单链表中倒数第k个节点. 这道题的考点在于我们怎么在一个单链表中找到倒数第n个元素? 由于是单链表,所以我们没办法从最后一个元素数起,然后数n个得到答案. 但这种最直观的思路 ...

  2. RedHat7上安装MariaDB

    编译安装MariaDB 下载MariaDB# wget http://mirrors.opencas.cn/mariadb//mariadb-10.1.8/source/mariadb-10.1.8. ...

  3. Effective C++ 笔记三 资源管理

    条款13:以对象管理资源 许多资源被动态分配于heap内而后被用于单一区块或函数内.它们应该在控制流离开那个区块或函数时被释放.标准程序库提供的auto_ptr正是针对这种形式而设计的特制产品.aut ...

  4. Java使用jackson问题解决

    Java使用jackson问题解决 >>>>>>>>>>>>>>>>>>>>&g ...

  5. 当append里面的标签显示不出来的时候,用下面的方式做

     $("#result_td").append(tem1+tem3)  $("#result_td").append($(tem1+tem3)) 

  6. enableEventValidation

    回发或回调参数无效.在配置中使用 <pages enableEventValidation="true"/> 或在页面中使用 <%@ Page EnableEve ...

  7. Windows Socket五种I/O模型

    转载:http://www.cnblogs.com/tianzhiliang/archive/2010/08/31/1813637.html 如果你想在Windows平台上构建服务器应用,那么I/O模 ...

  8. Handler 原理分析和使用(一)

    我为什么写Handler,原因主要还在于它在整个 Android 应用层面非常之关键,他是线程间相互通信的主要手段.最为常用的是其他线程通过Handler向主线程发送消息,更新主线程UI. 下面是一个 ...

  9. Java:Json与其他Java对象集合的转换

    一.引入的jar包 json-lib-2.4-jdk15.jar 二.Json字符串转换为其他对象 1.对象==>json字符串 2.list和Map集合==>json字符串 3.Map集 ...

  10. NSdate 时间格式

    NSdate 时间格式 NSTimeInterval 时间间隔 基本单位 秒 NSDateFormatter 时间格式器 用于日期对象的格式化或字符串解析为日期对象 日期格式如下: y  年 M  年 ...