来自:

https://www.zhihu.com/question/41540197

https://www.douban.com/note/518998773/

作者:水哥
链接:https://www.zhihu.com/question/41540197/answer/91698989
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

在图像中,尤其是分类问题中应用AP,是一种评价ranking方式好不好的指标:

举例来说,我有一个两类分类问题,分别5个样本,如果这个分类器性能达到完美的话,ranking结果应该是+1,+1,+1,+1,+1,-1,-1,-1,-1,-1.

但是分类器预测的label,和实际的score肯定不会这么完美。按照从大到小来打分,我们可以计算两个指标:precision和recall。比如分类器认为打分由高到低选择了前四个,实际上这里面只有两个是正样本。此时的recall就是2(你能包住的正样本数)/5(总共的正样本数)=0.4,precision是2(你选对了的)/4(总共选的)=0.5.

图像分类中,这个打分score可以由SVM得到:s=w^Tx+b就是每一个样本的分数。

从上面的例子可以看出,其实precision,recall都是选多少个样本k的函数,很容易想到,如果我总共有1000个样本,那么我就可以像这样计算1000对P-R,并且把他们画出来,这就是PR曲线:

这里有一个趋势,recall越高,precision越低。这是很合理的,因为假如说我把1000个全拿进来,那肯定正样本都包住了,recall=1,但是此时precision就很小了,因为我全部认为他们是正样本。recall=1时的precision的数值,等于正样本所占的比例。

所以AP,average precision,就是这个曲线下的面积,这里average,等于是对recall取平均。而mean average precision的mean,是对所有类别取平均(每一个类当做一次二分类任务)。现在的图像分类论文基本都是用mAP作为标准。

1.使用AP会比accuracy要合理。对于accuracy,如果有9个负样本和一个正样本,那么即使分类器什么都不做全部判定为负样本accuracy也有90%。但是对于AP,recall=1那个点precision会掉到0.1.曲线下面积就会反映出来。

2.在实际中计算AP时,如果是matlab的话,可以直接调用vl_feat中的vl_pr:VLFeat - Tutorials
这里面详细地给出了概念的解释以及计算方式。

在机器学习中,ROC(Receiver Operator Characteristic)曲线被广泛应用于二分类问题中来评估分类器的可信度,但是当处理一些高度不均衡的数据集时,PR曲线能表现出更多的信息,发现更多的问题。

1.ROC曲线和PR曲线是如何画出来的?

在二分类问题中,分类器将一个实例的分类标记为是或否,这可以用一个混淆矩阵来表示。混淆矩阵有四个分类,如下表:

actual positive actual negative
predicted positive TP FP
predicted negative FN TN
其中,列对应于实例实际所属的类别,行表示分类预测的类别。

TP(True Positive):指正确分类的正样本数,即预测为正样本,实际也是正样本。
FP(False Positive):指被错误的标记为正样本的负样本数,即实际为负样本而被预测为正样本,所以是False。
TN(True Negative):指正确分类的负样本数,即预测为负样本,实际也是负样本。
FN(False Negative):指被错误的标记为负样本的正样本数,即实际为正样本而被预测为负样本,所以是False。
TP+FP+TN+FN:样本总数。
TP+FN:实际正样本数。
TP+FP:预测结果为正样本的总数,包括预测正确的和错误的。
FP+TN:实际负样本数。
TN+FN:预测结果为负样本的总数,包括预测正确的和错误的。
这里面的概念有些绕,需要慢慢理解,/(ㄒoㄒ)/~~。以这四个基本指标可以衍生出多个分类器评价指标,如下图:

在PR曲线中,以Recall(貌似翻译为召回率或者查全率)为x轴,Precision为y轴。Recall与TPR的意思相同,而Precision指正确分类的正样本数占总正样本的比例。如下图:

PR(Precision-Recall)曲线和mAP指标的更多相关文章

  1. 机器学习:评价分类结果(Precision - Recall 的平衡、P - R 曲线)

    一.Precision - Recall 的平衡 1)基础理论 调整阈值的大小,可以调节精准率和召回率的比重: 阈值:threshold,分类边界值,score > threshold 时分类为 ...

  2. Handling skewed data---trading off precision& recall

    preision与recall之间的权衡 依然是cancer prediction的例子,预测为cancer时,y=1;一般来说做为logistic regression我们是当hθ(x)>=0 ...

  3. 目标检测的评价标准mAP, Precision, Recall, Accuracy

    目录 metrics 评价方法 TP , FP , TN , FN 概念 计算流程 Accuracy , Precision ,Recall Average Precision PR曲线 AP计算 A ...

  4. 评价指标整理:Precision, Recall, F-score, TPR, FPR, TNR, FNR, AUC, Accuracy

    针对二分类的结果,对模型进行评估,通常有以下几种方法: Precision.Recall.F-score(F1-measure)TPR.FPR.TNR.FNR.AUCAccuracy   真实结果 1 ...

  5. 查准与召回(Precision & Recall)

    Precision & Recall 先看下面这张图来理解了,后面再具体分析.下面用P代表Precision,R代表Recall 通俗的讲,Precision 就是检索出来的条目中(比如网页) ...

  6. TP Rate ,FP Rate, Precision, Recall, F-Measure, ROC Area,

    TP Rate ,FP Rate, Precision, Recall, F-Measure, ROC Area, https://www.zhihu.com/question/30643044 T/ ...

  7. Classification week6: precision & recall 笔记

    华盛顿大学 machine learning :classification  笔记 第6周 precision & recall 1.accuracy 局限性 我们习惯用 accuracy ...

  8. Precision,Recall,F1的计算

    Precision又叫查准率,Recall又叫查全率.这两个指标共同衡量才能评价模型输出结果. TP: 预测为1(Positive),实际也为1(Truth-预测对了) TN: 预测为0(Negati ...

  9. 机器学习--如何理解Accuracy, Precision, Recall, F1 score

    当我们在谈论一个模型好坏的时候,我们常常会听到准确率(Accuracy)这个词,我们也会听到"如何才能使模型的Accurcy更高".那么是不是准确率最高的模型就一定是最好的模型? 这篇博文会向大家解释 ...

随机推荐

  1. NUMA的取舍与优化设置

    在os层numa关闭时,打开bios层的numa会影响性能,QPS会下降15-30%; 在bios层面numa关闭时,无论os层面的numa是否打开,都不会影响性能. 安装numactl:      ...

  2. es6基础(1)--声明

    function test(){ //let只在块作用域有效 for(let i=1;i<3;i++){ console.log(i); } //es6严格模式,变量未声明,不可以用 //con ...

  3. css居中问题:水平居中、垂直居中

    亲们支持我的新博客哦==>原文地址 ) 本篇文章所有演示代码下载==>github/calamus0427 css水平垂直居中是面试时候遇到最多的问题,我总结一下大部分解决方案 水平居中: ...

  4. iOS第三方登录qq

    http://blog.sina.com.cn/s/blog_7b9d64af0101e5vj.html

  5. git clone慢

    hosts中添加git域名映射 git安装目录/etc/hosts同样修改

  6. 44.scrapy爬取链家网站二手房信息-2

    全面采集二手房数据: 网站二手房总数据量为27650条,但有的参数字段会出现一些问题,因为只给返回100页数据,具体查看就需要去细分请求url参数去请求网站数据.我这里大概的获取了一下筛选条件参数,一 ...

  7. 以虎嗅网4W+文章的文本挖掘为例,展现数据分析的一整套流程

    本文转自知乎 作者:苏格兰折耳喵 ----------------------------------------------------- 本文作者将结合自身经验,并以实际案例的形式进行呈现,涉及从 ...

  8. 《算法》BEYOND 部分程序 part 3

    ▶ 书中第六章部分程序,加上自己补充的代码,包括 Graham 扫描生成凸包,计算最远点对 ● Graham 扫描生成凸包 package package01; import java.util.Ar ...

  9. .Net MVC 身份验证

    .Net身份验证主要是分为三种 Windows | Forms | Passport ,其中Froms在项目中用的最多. Windows 身份验证 Forms 验证 Passport 验证 1.Win ...

  10. eclipse gradle插件 org.gradle.tooling.GradleConnectionException: Could not install Gradle distribution from 'https://services.gradle.org/distributions/gradle-3.4-bin.zip'.

    eclipse安装gradle后出现如下异常: org.gradle.tooling.GradleConnectionException: Could not install Gradle distr ...