poj1093
题意:给出一个句子和要求整理后每行包含的字符数,要求将其整理为一种总badness最小的形式。设每个空格长度为n,单个空格的badness计算公式为(n-1)^2。总badness等于所有空格的badness的总和。给出整理后的格式。在badness最小的前提下,在分配一行中的空格时要让前面的空格尽量少。如果一个单词单占一行,badness为500。
分析:动态规划。f[i]表示前i个单词的最小badness是多少。f[i]=f[i-j]+cost(i-j,j);。cost(a,b)表示从单词a+1到单词b的放在一行中最小badness是多少。
并用from[i]存储f[i]是从哪个位置计算得来的值,即最后一次更新f[i]时i-j是几,即f[i]所在行的上一行的最后一个单词是第几个。
我们利用from数组可以求出最佳方案,然后按照题中要求输出即可。
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
using namespace std; const int maxn = ; int n, wordsnum;
string words[maxn];
int sum[maxn];
int f[maxn][maxn];
int from[maxn][maxn]; void turntowords(string st)
{
int i = ; while ()
{
i = ;
while (st[i] != ' ' && i < signed(st.length()))
i++;
words[wordsnum++] = st.substr(, i);
sum[wordsnum] = i + sum[wordsnum - ];
if (i == signed(st.length()))
break;
st.erase(, i);
while (st[] == ' ')
st.erase(, );
}
} void init()
{
string st; wordsnum = ;
memset(sum, , sizeof(sum));
getchar();
while ()
{
getline(cin, st);
if (st == "")
break;
turntowords(st);
}
} int cost(int start, int end)
{
int left, right, tot, len; if (end - start == )
return ;
tot = n - (sum[end] - sum[start]);
len = tot / (end - start - );
left = end - start - - tot % (end - start - );
right = tot % (end - start - );
return left * (len - ) * (len - ) + right * len * len;
} void work()
{
int i, j, k; memset(f, -, sizeof(f));
f[][] = ;
for (i = ; i <= wordsnum; i++)
for (j = ; j <= wordsnum; j++)
for (k = ; k <= j && j - k >= i - && n - (sum[j] - sum[j - k]) >= k - ; k++)
if (f[i - ][j - k] != - && (f[i][j] > f[i - ][j - k] + cost(j - k, j) || f[i][j] == -))
{
f[i][j] = f[i - ][j - k] + cost(j - k, j);
from[i][j] = k;
}
} void printline(int start, int end)
{
int left, tot, len, i, j; if (end - start == )
{
cout << words[start] << endl;
return;
}
tot = n - (sum[end] - sum[start]);
len = tot / (end - start - );
left = end - start - - tot % (end - start - );
for (i = start; i < end - ; i++)
{
cout << words[i];
for (j = ; j < len; j++)
printf(" ");
if (i - start + > left)
printf(" ");
}
cout << words[end - ] << endl;
} void output()
{
int i, best = , besti; for (i = ; i <= wordsnum; i++)
if (f[i][wordsnum] < best && f[i][wordsnum] >= )
{
best = f[i][wordsnum];
besti = i;
}
int line[maxn];
int j = wordsnum;
for (i = besti; i > ; i--)
{
line[i] = from[i][j];
j -= from[i][j];
}
j = ;
for (i = ; i <= besti; i++)
{
printline(j, j + line[i]);
j += line[i];
}
cout << endl;
} int main()
{
//freopen("D:\\t.txt", "r", stdin);
while (cin >> n && n != )
{
init();
work();
output();
}
return ;
}
poj1093的更多相关文章
- DP50题(转)
转自https://www.luogu.org/blog/cccx2016/dp50-ti-ti-hao dp50题: poj1014 poj1015 poj1018 poj1036 poj1038 ...
随机推荐
- How to delete deployed process definition in activiti?
https://community.alfresco.com/thread/219767-how-to-delete-deployed-process
- MySQL的order by时区分大小写
Mysql 查询区分大小写 mysql查询默认是不区分大小写的 如: select * from some_table where str=‘abc'; select * from some_tabl ...
- 基于SOA的高并发和高可用分布式系统架构和组件详解
基于SOA的分布式高可用架构和微服务架构,是时下如日中天的互联网企业级系统开发架构选择方案.在核心思想上,两者都主张对系统的横向细分和扩展,按不同的业务功能模块来对系统进行分割并且使用一定的手段实现服 ...
- BOM之screen对象
前面的话 screen对象在javascript编程中,比较冷门,不太常用.screen对象用来表明客户端的能力,其中包括浏览器窗口外部的显示器的信息,如像素高度和宽度等.本文将详细介绍screen对 ...
- iOS 给UIView添加xib
2017-08-25编辑:这文章有点过时了 推荐新的文章:http://www.cnblogs.com/hero11223/p/6881848.html 一段时间没敲代码,以前一些简单的都不会做了,翻 ...
- 未处理的异常 stack overflow
今天在编译程序时遇到“0x00e304f7 处有未经处理的异常: 0xC00000FD: Stack overflow”的错误,也就是栈溢出了,google了一下,原来是我申请的一个变量太大了,con ...
- 【洛谷P1828】香甜的黄油
题目大意:给定 N 个点,M 条边的无向图,在其中选定 P 个点,每个点可能被选多次,求图中的一个点到选定的 P 个点的距离的值最小是多少. 题解:由于数据范围的限制,直接 Floyd 会超时,因此对 ...
- 【POJ2728】Desert King 最优比率生成树
题目大意:给定一个 N 个点的无向完全图,边有两个不同性质的边权,求该无向图的一棵最优比例生成树,使得性质为 A 的边权和比性质为 B 的边权和最小. 题解:要求的答案可以看成是 0-1 分数规划问题 ...
- C# 分析 IIS 日志(Log)
由于最近又要对 IIS日志 (Log) 分析,以便得出各个搜索引擎每日抓取的频率,所以这两天一直在尝试各个办法来分析 IIS 日志 (Log),其中尝试过:导入数据库.Log parser.Powse ...
- linux ------ 硬连接和软连接(软连接也叫符号连接)
在Linux的文件系统中,保存在磁盘分区中的文件不管是什么类型都给它分配一个编号,称为索引节点号 (Inode Index).在Linux中,多个文件名指向同一索引节点是存在的.一般这种连接就是硬连接 ...