【BZOJ1488】[HNOI2009]图的同构(Burside引理,Polya定理)

题面

BZOJ

洛谷

题解

求本质不同的方案数,很明显就是群论这套理论了。

置换一共有\(n!\)个,考虑如何对于任意一个置换求不动点数量。

首先边存在或者不存在太麻烦了,我们假装所有边都已经存在,出现过的边和不存在的边用两种不同的颜色染色即可。这样子我们就假装所有的边都出现了,也就是一个完全图。

显然循环是对于点而论的,但是这题同构是对于边而论的。那么我们对于一个点的循环,考虑它的两个顶点。这两个顶点只有两种不同情况,要么在同一个循环内,要么不在同一个循环内。考虑所有在同一个循环中的\(n\)点形成的完全图,那么它的边构成了\(n/2\)个循环,感性理解就是,我们把\(n\)个点拉成一排,把相邻距离为定值的点连上边,显然这样子会构成一个环,因为这个距离的定值\(d\)和\(n-d\)是等价的,所以边构成了\(n/2\)个循环。

考虑两个顶点不在一个循环内,那么构成循环必定是在一个点集中选择一条边连向另外一个点集,再从另外一个点集中选一条边连回来,我们把点集看成两个环,那么每次可以把环上所有的点旋转一下,那么旋转\(lcm\)次之后就转回来了,意味着这\(lcm\)条边必须相同,即构成一个循环,那么边的循环的个数就是\(gcd\)了。

假设有边的置换,我们很容易知道不动点的数量就是\(2^m\),其中\(m\)是边置换的数量,显然你的个置换中的边的颜色都是相同的。

这样一来,我们就把点置换转换为边置换了,这样就可以方便的计算了。

\(60\)的拆分数大概是百万级别的,我们似乎是可以爆搜拆分数计算答案的。

那么考虑一个拆分数实际上对应的方案数,这个排列组合计算一下就好了。

我们假设有\(k\)个循环,每个的大小分别是\(a_1,a_2,...\),每个大小的置换个数是\(num_1,num_2...\)

那么这种情况的贡献就是\(\frac{n!}{(\prod a_i!)*(\prod num_i!)}\),原因就是,\(n!\)是所有方案,然后对于每个置换内,显然环的位置不影响,出去等价的环,然后对于每个等大小的置换,显然位置是可以交换的,那么除去阶乘的排列的影响。

好了,这样子大概可以算完所有置换的不动点数量,然后除掉一个置换总数就对了,显然置换总数是\(n!\)。

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define MOD 997
#define MAX 75
int n,ans,jc[MOD],inv[MOD],jv[MOD];
int g[MAX][MAX],a[MAX],b[MAX],bin[MAX*MAX];
void calc()
{
int ret=jc[n],tot=0,sum=0;
for(int i=1;i<=n;++i)
{
ret=ret*jv[a[i]]%MOD;
for(int j=1;j<=a[i];++j)
ret=ret*inv[i]%MOD,b[++tot]=i;
}
for(int i=1;i<=tot;++i)sum+=b[i]/2;
for(int i=1;i<=tot;++i)
for(int j=i+1;j<=tot;++j)
sum+=g[b[i]][b[j]];
ret=ret*bin[sum]%MOD;
ans=(ans+ret)%MOD;
}
void dfs(int x,int sum)
{
if(x==1){a[x]=n-sum;calc();return;}
for(int i=0;sum+i*x<=n;++i)
a[x]=i,dfs(x-1,sum+i*x);
}
int main()
{
scanf("%d",&n);
jc[0]=jv[0]=inv[0]=inv[1]=bin[0]=1;
for(int i=2;i<MOD;++i)inv[i]=inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<MOD;++i)jc[i]=jc[i-1]*i%MOD;
for(int i=1;i<MOD;++i)jv[i]=jv[i-1]*inv[i]%MOD;
for(int i=1;i<MAX*MAX;++i)bin[i]=bin[i-1]*2%MOD;
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
g[i][j]=__gcd(i,j);
dfs(n,0);ans=ans*jv[n]%MOD;
printf("%d\n",ans);return 0;
}

【BZOJ1488】[HNOI2009]图的同构(Burside引理,Polya定理)的更多相关文章

  1. bzoj1488 [HNOI2009]图的同构 Burnside 引理

    题目传送门 bzoj1488 - [HNOI2009]图的同构 bzoj1815 - [Shoi2006]color 有色图(双倍经验) 题解 暴力 由于在做题之前已经被告知是 Burnside 引理 ...

  2. burnside引理&polya定理

    burnside引理&polya定理 参考资料: <polya计数法的应用>--陈瑜希 黄学长 置换: 置换即是将n个元素的染色进行交换,产生一个新的染色方案. 群: 一个元素的集 ...

  3. [bzoj1488][HNOI2009]图的同构——Polya定理

    题目大意 求两两互不同构的含n个点的简单图有多少种. 简单图是关联一对顶点的无向边不多于一条的不含自环的图. a图与b图被认为是同构的是指a图的顶点经过一定的重新标号以后,a图的顶点集和边集能完全与b ...

  4. bzoj1488[HNOI2009]图的同构

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1488 1488: [HNOI2009]图的同构 Time Limit: 10 Sec  M ...

  5. 【uva 10294】 Arif in Dhaka (First Love Part 2) (置换,burnside引理|polya定理)

    题目来源:UVa 10294 Arif in Dhaka (First Love Part 2) 题意:n颗珠子t种颜色 求有多少种项链和手镯 项链不可以翻转 手镯可以翻转 [分析] 要开始学置换了. ...

  6. 等价类计数:Burnside引理 & Polya定理

    提示: 本文并非严谨的数学分析,有很多地方是自己瞎口胡的,仅供参考.有错误请不吝指出 :p 1. 群 1.1 群的概念 群 \((S,\circ)\) 是一个元素集合 \(S\) 和一种二元运算 $ ...

  7. hdu 5868 2016 ACM/ICPC Asia Regional Dalian Online 1001 (burnside引理 polya定理)

    Different Circle Permutation Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 262144/262144 K ...

  8. BZOJ 1488 Luogu P4727 [HNOI2009]图的同构 (Burnside引理、组合计数)

    题目链接 (Luogu) https://www.luogu.org/problem/P4727 (BZOJ) https://www.lydsy.com/JudgeOnline/problem.ph ...

  9. [BZOJ1815&BZOJ1488]有色图/图的同构(Polya定理)

    由于有很多本质相同的重复置换,我们先枚举各种长度的点循环分别有多少个,这个暴搜的复杂度不大,n=53时也只有3e5左右.对于每种搜索方案可以轻易求出它所代表的置换具体有多少个. 但我们搜索的是点置换组 ...

随机推荐

  1. Redis Replication

    Replication 官网说明:http://www.redis.io/topics/replication Redis使用异步复制; 一个Master可以有多个Slaves; Slaves可以接收 ...

  2. POJ 1459&&3436

    两道比较基础的网络流题目,重点就是建图. 1458:题意就是给你一些东西它们的数据,其中一些是发电站,还有一些是用户的家里,其中还有一些是中转站.让你求最大的输送电量. 就是一道很基础的最大流题目,建 ...

  3. cookie提取dex文件

    有时候在java层能获取dex文件的cookie,但是在java不能从cookie得到dex,如果想要获取只能通过jni在C层实现,具体实现代码如下(nexus手机4.4系统) static void ...

  4. 微服务监控zipkin、skywalking以及日志ELK监控系列

    0.整体架构 整体架构目录:ASP.NET Core分布式项目实战-目录 一.目录 1.zipkin监控 2.skywalking监控 3.ELK日志监控 asp.net Core 交流群:78746 ...

  5. Yeoman的好基友:Grunt

    grunt介绍 前端不能承受之痛 1.这是我们的生活 文件压缩:YUI Compressor.Google Closure 文件合并:fiddler + qzmin 文件校验:jshint 雪碧图:c ...

  6. Asp.net MVC Razor常见问题及解决方法(转载>云中客)

    没有经验的童鞋就是这样磕磕碰碰出来的经验. 1,Datatype的错误提示消息无法自定义 这也许是Asp.net MVC的一个Bug.ViewModel中定义了DataType为Date字段: 1 2 ...

  7. Grin v0.5在Ubuntu下的安装和启动

    Grin和bitcoin一样也是一种点对点的现金交易系统,但它通过零和验证算法,使得双方的交易金额不会被第三方知晓,让它在隐私保护方面更强.其官方的介绍是: 所有人的电子交易,没有审查或限制.并提出它 ...

  8. Individual Project - Word frequency program by HJB

    using System;using System.Collections.Generic;using System.IO;using System.Linq;using System.Text;us ...

  9. linux内核分析--操作系统是如何工作的?

    一个简单的时间片轮转多道程序 操作系统的"两把剑":中断上下文(保存现场和恢复现场)和进程上下文的切换 源代码的分析 *使用的源代码为视频中所使用的精简内核的源代码 首先分析myp ...

  10. 《Linux内核分析》课程第五周学习总结

    姓名:何伟钦 学号:20135223 ( *原创作品转载请注明出处*) ( 学习课程:<Linux内核分析>MOOC课程http://mooc.study.163.com/course/U ...