题意

给你一个 \(n\) 个 \(\rm 01\) 组成的环,每次操作之后每个位置为1当且仅当他的左右恰好有1个1.输出进行 \(T\) 次操作之后的环。

\(n\leq 10^5, T\leq 10^{15}\).

分析

  • 通过1~4步之内模拟可以得到结论:一个位置能够在 \(2^k\) 的操作之后为1当且仅当他的往左往右的 \(2^k\) 个位置的异或值为1.

  • 将数字拆成若干个 \(2^k\) 进行操作即可。

  • 总时间复杂度为 \(O(nlogT)\)。

代码

#include<bits/stdc++.h>
using namespace std;
#define go(u) for(int i=head[u],v=e[i].to;i;i=e[i].lst,v=e[i].to)
#define rep(i,a,b) for(int i=a;i<=b;++i)
#define pb push_back
typedef long long LL;
inline int gi(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-1;ch=getchar();}
while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-48;ch=getchar();}
return x*f;
}
template<typename T>inline bool Max(T &a,T b){return a<b?a=b,1:0;}
template<typename T>inline bool Min(T &a,T b){return b<a?a=b,1:0;}
const int N=1e5 +7;
LL n,T;
LL a[N],b[N];
char s[N];
int main(){
scanf("%lld%lld",&n,&T);
scanf("%s",s);
rep(i,0,n-1) a[i]=s[i]-'0';
for(int k=61;~k;--k)if(T&(1ll<<k)){
memset(b,0,sizeof b);
rep(i,0,n-1){
b[((i+(1ll<<k))%n+n)%n]^=a[i];
b[((i-(1ll<<k))%n+n)%n]^=a[i];
}
memcpy(a,b,sizeof a);
}
rep(i,0,n-1) printf("%d",a[i]);
puts("");
return 0;
}

LOJ#2799. 「CCC 2016」生命之环的更多相关文章

  1. LOJ #2802. 「CCC 2018」平衡树(整除分块 + dp)

    题面 LOJ #2802. 「CCC 2018」平衡树 题面有点难看...请认真阅读理解题意. 转化后就是,给你一个数 \(N\) ,每次选择一个 \(k \in [2, N]\) 将 \(N\) 变 ...

  2. LOJ 2292 「THUSC 2016」成绩单——区间DP

    题目:https://loj.ac/problem/2292 直接 DP 很难做,主要是有那种 “一个区间内部有很多个别的区间” 的情况. 自己想了一番枚举 max-min 的最大限制,然后在该基础上 ...

  3. LOJ 2991 「THUSC 2016」补退选——trie+线段树合并或vector

    题目:https://loj.ac/problem/2291 想了线段树合并的做法.就是用线段树维护 trie 的每个点在各种时间的操作. 然后线段树合并一番,线段树维护前缀最大值,就是维护最大子段和 ...

  4. loj 2292「THUSC 2016」成绩单

    loj 看着就很区间dp,所以考虑求\(f_{i,j}\)表示区间\([i,j]\)的答案.注意到贡献答案的方式是每次选一个连续段,拿走后剩下的段拼起来继续段,所以转移就考虑从最后一次选的方法转移过来 ...

  5. 2018.10.27 loj#2292. 「THUSC 2016」成绩单(区间dp)

    传送门 g[i][j][k][l]g[i][j][k][l]g[i][j][k][l]表示将区间l,rl,rl,r变成最小值等于kkk,最大值等于lll时的花费的最优值. f[i][j]f[i][j] ...

  6. Loj #2731 「JOISC 2016 Day 1」棋盘游戏

    Loj 2731 「JOISC 2016 Day 1」棋盘游戏 JOI 君有一个棋盘,棋盘上有 \(N\) 行 \(3\) 列 的格子.JOI 君有若干棋子,并想用它们来玩一个游戏.初始状态棋盘上至少 ...

  7. Loj #2495. 「AHOI / HNOI2018」转盘

    Loj #2495. 「AHOI / HNOI2018」转盘 题目描述 一次小 G 和小 H 原本准备去聚餐,但由于太麻烦了于是题面简化如下: 一个转盘上有摆成一圈的 \(n\) 个物品(编号 \(1 ...

  8. Loj #2494. 「AHOI / HNOI2018」寻宝游戏

    Loj #2494. 「AHOI / HNOI2018」寻宝游戏 题目描述 某大学每年都会有一次 Mystery Hunt 的活动,玩家需要根据设置的线索解谜,找到宝藏的位置,前一年获胜的队伍可以获得 ...

  9. loj#2020 「AHOI / HNOI2017」礼物 ntt

    loj#2020 「AHOI / HNOI2017」礼物 链接 bzoj没\(letex\),差评 loj luogu 思路 最小化\(\sum\limits_1^n(a_i-b_i)^2\) 设改变 ...

随机推荐

  1. Problem2-Project Euler

    Even Fibonacci numbers   Each new term in the Fibonacci sequence is generated by adding the previous ...

  2. python终端总是无法删除字符

    yum install readline-devel

  3. SQL Server 从2000复制数据到2008及以上版本的一种方法

    1.通过Linked Servers 执行sql出现错误提示,无法执行复制数据操作. sql: insert into tb_User select from [**.**.*.**].DB.dbo. ...

  4. 大数据开发实战:HDFS和MapReduce优缺点分析

    一. HDFS和MapReduce优缺点 1.HDFS的优势 HDFS的英文全称是 Hadoop Distributed File System,即Hadoop分布式文件系统,它是Hadoop的核心子 ...

  5. Win7 user profile cant logon

    1.local user:testlb1 1234@cat can login safe model 1.重新启动计算机开机时连续点击F8,选择进入安全模式.2.开始-在搜索栏中输入services. ...

  6. 1、爬虫简介与request模块

    一 爬虫简介 概述 近年来,随着网络应用的逐渐扩展和深入,如何高效的获取网上数据成为了无数公司和个人的追求,在大数据时代,谁掌握了更多的数据,谁就可以获得更高的利益,而网络爬虫是其中最为常用的一种从网 ...

  7. python创建目录保存文件

    创建目录 在Python中可以使用os.mkdir()函数创建目录(创建一级目录). 其原型如下所示: os.mkdir(path) 其参数path 为要创建目录的路径. 例如要在D盘下创建hello ...

  8. python第三十一课--递归(2.遍历某个路径下面的所有内容)

    需求:遍历某个路径下面的所有内容(文件和目录,多层级的) import os #自定义函数(递归函数):遍历目录层级(多级) def printDirs(path): dirs=os.listdir( ...

  9. ES6标准简介之Babel转码器解说

    ES6是ECMAScript 6的简称,是JavaScript语言的下一代标准,现在基于jquery库的前端开发js所使用的标准是ES5(ECMAScript 5).ES6已于2015年6月正式发布. ...

  10. Could not find class com.google.gson.Gson

    在Android开发中使用gson解析json字符串,出现异常:java.lang.classnotfoundexception:com.google.gson.Gson.解决方案如下: 这个异常的怪 ...