▶ 书中第四章部分程序,包括在加上自己补充的代码,两种 Prim 算法求最小生成树

● 简单 Prim 算法求最小生成树

 package package01;

 import edu.princeton.cs.algs4.In;
import edu.princeton.cs.algs4.StdOut;
import edu.princeton.cs.algs4.Edge;
import edu.princeton.cs.algs4.EdgeWeightedGraph;
import edu.princeton.cs.algs4.Queue;
import edu.princeton.cs.algs4.MinPQ; public class class01
{
private static final double FLOATING_POINT_EPSILON = 1E-12; private boolean[] marked; // 顶点是否在生成树中
private double weight; // 生成树的权值和
private Queue<Edge> mst; // 生成树包含的边
private MinPQ<Edge> pq; // 搜索队列 public class01(EdgeWeightedGraph G)
{
marked = new boolean[G.V()];
mst = new Queue<Edge>();
pq = new MinPQ<Edge>();
for (int v = 0; v < G.V(); v++) // 对每个没有遍历的节点都使用 prim
{
if (!marked[v])
prim(G, v);
}
} private void prim(EdgeWeightedGraph G, int s)
{
for (scan(G, s); !pq.isEmpty();)
{
Edge e = pq.delMin(); // 取出权值最小的边
int v = e.either(), w = e.other(v);
if (marked[v] && marked[w]) // 若该边两端都遍历过,不要(由于 scan,v 与 w 之一肯定被遍历过)
continue;
mst.enqueue(e); // 将权值最小的边加入生成树
weight += e.weight(); // 更新权值和
if (!marked[v]) // 从新边的新顶点继续收集新的边
scan(G, v);
if (!marked[w])
scan(G, w);
}
} private void scan(EdgeWeightedGraph G, int v) // 将一端为 v、另一端没有遍历过的边放入队列中
{
marked[v] = true;
for (Edge e : G.adj(v))
{
if (!marked[e.other(v)])
pq.insert(e);
}
} public Iterable<Edge> edges()
{
return mst;
} public double weight()
{
return weight;
} public static void main(String[] args)
{
In in = new In(args[0]);
EdgeWeightedGraph G = new EdgeWeightedGraph(in);
class01 mst = new class01(G);
for (Edge e : mst.edges())
StdOut.println(e);
StdOut.printf("%.5f\n", mst.weight());
}
}

● 改进,使用索引最小优先队列来建立搜索队列,记录(起点到)每个顶点的距离来判断是否将新边加入生成树

 package package01;

 import edu.princeton.cs.algs4.In;
import edu.princeton.cs.algs4.StdOut;
import edu.princeton.cs.algs4.Edge;
import edu.princeton.cs.algs4.EdgeWeightedGraph;
import edu.princeton.cs.algs4.Queue;
import edu.princeton.cs.algs4.IndexMinPQ; public class class01
{
private static final double FLOATING_POINT_EPSILON = 1E-12; private boolean[] marked;
private Edge[] edgeTo; // 除了搜索起始顶点,新加入每条边对应一个顶点,顶点 v 对应的边是 edgeTo[v]
private double[] distTo; // 生成树到每个顶点的距离,用于衡量新边是否值得加入生成树
private IndexMinPQ<Double> pq;// 搜索队列 public class01(EdgeWeightedGraph G)
{
marked = new boolean[G.V()];
edgeTo = new Edge[G.V()];
distTo = new double[G.V()];
pq = new IndexMinPQ<Double>(G.V());
for (int v = 0; v < G.V(); v++)
distTo[v] = Double.POSITIVE_INFINITY;
for (int v = 0; v < G.V(); v++)
{
if (!marked[v])
prim(G, v);
}
} private void prim(EdgeWeightedGraph G, int s)
{
distTo[s] = 0.0; // 搜索起点对应的距离为 0
for (pq.insert(s, distTo[s]); !pq.isEmpty();)
{
int v = pq.delMin(); // 每次取距离最小的顶点来开花(防止同一个顶点可以有对多条边连到树上)
scan(G, v); // 注意 scan 只负责在给定的顶点上开花,不负责递归
}
} private void scan(EdgeWeightedGraph G, int v)
{
marked[v] = true;
for (Edge e : G.adj(v))
{
int w = e.other(v);
if (marked[w]) // 边 v-w 两端都被遍历过,在队列中
continue;
if (e.weight() < distTo[w]) // 边 v-w 的权值小于顶点 w 的距离,说明加入该条边后生成树的总权值会下降
{
distTo[w] = e.weight(); // 加入边 v-w,更新 distTo 和 edgeTo
edgeTo[w] = e;
if (pq.contains(w)) // 搜若索队列中已经存在 w 则更新其 distTo(键值),不存在则将 w 加入
pq.decreaseKey(w, distTo[w]);
else
pq.insert(w, distTo[w]);
}
}
} public Iterable<Edge> edges()
{
Queue<Edge> mst = new Queue<Edge>();
for (int v = 0; v < edgeTo.length; v++)// 遍历边列表,把每个顶点对应的边加入队列中
{
Edge e = edgeTo[v];
if (e != null)
mst.enqueue(e);
}
return mst;
} public double weight()
{
double weight = 0.0;
for (Edge e : edges())
weight += e.weight();
return weight;
} public static void main(String[] args)
{
In in = new In(args[0]);
EdgeWeightedGraph G = new EdgeWeightedGraph(in);
class01 mst = new class01(G);
for (Edge e : mst.edges())
StdOut.println(e);
StdOut.printf("%.5f\n", mst.weight());
}
}

《算法》第四章部分程序 part 14的更多相关文章

  1. 《算法》第四章部分程序 part 19

    ▶ 书中第四章部分程序,包括在加上自己补充的代码,有边权有向图的邻接矩阵,FloydWarshall 算法可能含负环的有边权有向图任意两点之间的最短路径 ● 有边权有向图的邻接矩阵 package p ...

  2. 《算法》第四章部分程序 part 18

    ▶ 书中第四章部分程序,包括在加上自己补充的代码,在有权有向图中寻找环,Bellman - Ford 算法求最短路径,套汇算法 ● 在有权有向图中寻找环 package package01; impo ...

  3. 《算法》第四章部分程序 part 16

    ▶ 书中第四章部分程序,包括在加上自己补充的代码,Dijkstra 算法求有向 / 无向图最短路径,以及所有顶点对之间的最短路径 ● Dijkstra 算法求有向图最短路径 package packa ...

  4. 《算法》第四章部分程序 part 15

    ▶ 书中第四章部分程序,包括在加上自己补充的代码,Kruskal 算法和 Boruvka 算法求最小生成树 ● Kruskal 算法求最小生成树 package package01; import e ...

  5. 《算法》第四章部分程序 part 10

    ▶ 书中第四章部分程序,包括在加上自己补充的代码,包括无向图连通分量,Kosaraju - Sharir 算法.Tarjan 算法.Gabow 算法计算有向图的强连通分量 ● 无向图连通分量 pack ...

  6. 《算法》第四章部分程序 part 9

    ▶ 书中第四章部分程序,包括在加上自己补充的代码,两种拓扑排序的方法 ● 拓扑排序 1 package package01; import edu.princeton.cs.algs4.Digraph ...

  7. 《算法》第四章部分程序 part 17

    ▶ 书中第四章部分程序,包括在加上自己补充的代码,无环图最短 / 最长路径通用程序,关键路径方法(critical path method)解决任务调度问题 ● 无环图最短 / 最长路径通用程序 pa ...

  8. 《算法》第四章部分程序 part 13

    ▶ 书中第四章部分程序,包括在加上自己补充的代码,图的前序.后序和逆后续遍历,以及传递闭包 ● 图的前序.后序和逆后续遍历 package package01; import edu.princeto ...

  9. 《算法》第四章部分程序 part 12

    ▶ 书中第四章部分程序,包括在加上自己补充的代码,图的几种补充数据结构,包括无向 / 有向符号图,有权边结构,有边权有向图 ● 无向符号图 package package01; import edu. ...

随机推荐

  1. Centos 6.3 安装教程

    如果创建虚拟机,加载镜像之前都报错,可能是virtualbox 的版本问题,建议使用virtualbox    4.3.12 版本 1. 按回车 2.Skip 跳过 3.next 4.选择中文简体 n ...

  2. JAVA面向对象编程之购物车界面的设计与功能的实现

    1.小组成员及分工 小组成员 负责工作 兰泽祥 负责总体界面.Git代码库 吴修恩 负责MVC模式.类名包名的规范化 2.Git 仓库地址 仓库地址:https://gitee.com/lanzexi ...

  3. Git初级

    一,安装git 一键安装 Mac 或 Windows. 二,下载一个工具书 Git 命令手册 free Git cheat sheet 三,安装完成之后需要先配置两个基本配置:用户名和邮箱 $ git ...

  4. bzoj5017: [Snoi2017]炸弹

    Description 在一条直线上有 N 个炸弹,每个炸弹的坐标是 Xi,爆炸半径是 Ri,当一个炸弹爆炸时,如果另一个炸弹所在位置 Xj 满足:  Xi−Ri≤Xj≤Xi+Ri,那么,该炸弹也会被 ...

  5. 峰Redis学习(7)Redis 持久化RDB方式

    第一节:Redis 持久化介绍 redis所有的数据都存在内存中,所以速度非常快,但是一旦断电等情况,数据就没了.从内存当中同步到硬盘上,这个过程叫做持久化过程. 持久化操作,两种方式:rdb方式.a ...

  6. java1.8 新特性(关于 match,find reduce )操作

    match处理Integer集合 package lambda.stream; /** * @author 作者:cb * @version 创建时间:2019年1月4日 下午2:35:05 */ i ...

  7. 字符串全部转换为大写用str.toUpperCase()方法

    var message="Hello world!"; var x=message.toUpperCase();

  8. 读取 Excel 之 Epplus

    using (OpenFileDialog fd = new OpenFileDialog()) { fd.Filter = "Excel 2007文件(*.xlsx)|*.xlsx|所有文 ...

  9. linux删除文件夹下除了某一个文件之外的所有文件及find用法

    原文: https://www.jb51.net/article/99319.htm 比如一个目录下有1,2,3,4,5这五个文件,现在我需要删除除了2以外的所有文件,那么我可以使用 find . ! ...

  10. [UE4]Vertical Box结合Horizontal Box创建出类似微信的经典手机界面

    头部标题,中部为自动填充,底部为一个Horizontal Box,其中的“通讯录”文字比较宽,需要设置Size.Fill=1.5