《算法》第四章部分程序 part 14
▶ 书中第四章部分程序,包括在加上自己补充的代码,两种 Prim 算法求最小生成树
● 简单 Prim 算法求最小生成树
package package01; import edu.princeton.cs.algs4.In;
import edu.princeton.cs.algs4.StdOut;
import edu.princeton.cs.algs4.Edge;
import edu.princeton.cs.algs4.EdgeWeightedGraph;
import edu.princeton.cs.algs4.Queue;
import edu.princeton.cs.algs4.MinPQ; public class class01
{
private static final double FLOATING_POINT_EPSILON = 1E-12; private boolean[] marked; // 顶点是否在生成树中
private double weight; // 生成树的权值和
private Queue<Edge> mst; // 生成树包含的边
private MinPQ<Edge> pq; // 搜索队列 public class01(EdgeWeightedGraph G)
{
marked = new boolean[G.V()];
mst = new Queue<Edge>();
pq = new MinPQ<Edge>();
for (int v = 0; v < G.V(); v++) // 对每个没有遍历的节点都使用 prim
{
if (!marked[v])
prim(G, v);
}
} private void prim(EdgeWeightedGraph G, int s)
{
for (scan(G, s); !pq.isEmpty();)
{
Edge e = pq.delMin(); // 取出权值最小的边
int v = e.either(), w = e.other(v);
if (marked[v] && marked[w]) // 若该边两端都遍历过,不要(由于 scan,v 与 w 之一肯定被遍历过)
continue;
mst.enqueue(e); // 将权值最小的边加入生成树
weight += e.weight(); // 更新权值和
if (!marked[v]) // 从新边的新顶点继续收集新的边
scan(G, v);
if (!marked[w])
scan(G, w);
}
} private void scan(EdgeWeightedGraph G, int v) // 将一端为 v、另一端没有遍历过的边放入队列中
{
marked[v] = true;
for (Edge e : G.adj(v))
{
if (!marked[e.other(v)])
pq.insert(e);
}
} public Iterable<Edge> edges()
{
return mst;
} public double weight()
{
return weight;
} public static void main(String[] args)
{
In in = new In(args[0]);
EdgeWeightedGraph G = new EdgeWeightedGraph(in);
class01 mst = new class01(G);
for (Edge e : mst.edges())
StdOut.println(e);
StdOut.printf("%.5f\n", mst.weight());
}
}
● 改进,使用索引最小优先队列来建立搜索队列,记录(起点到)每个顶点的距离来判断是否将新边加入生成树
package package01; import edu.princeton.cs.algs4.In;
import edu.princeton.cs.algs4.StdOut;
import edu.princeton.cs.algs4.Edge;
import edu.princeton.cs.algs4.EdgeWeightedGraph;
import edu.princeton.cs.algs4.Queue;
import edu.princeton.cs.algs4.IndexMinPQ; public class class01
{
private static final double FLOATING_POINT_EPSILON = 1E-12; private boolean[] marked;
private Edge[] edgeTo; // 除了搜索起始顶点,新加入每条边对应一个顶点,顶点 v 对应的边是 edgeTo[v]
private double[] distTo; // 生成树到每个顶点的距离,用于衡量新边是否值得加入生成树
private IndexMinPQ<Double> pq;// 搜索队列 public class01(EdgeWeightedGraph G)
{
marked = new boolean[G.V()];
edgeTo = new Edge[G.V()];
distTo = new double[G.V()];
pq = new IndexMinPQ<Double>(G.V());
for (int v = 0; v < G.V(); v++)
distTo[v] = Double.POSITIVE_INFINITY;
for (int v = 0; v < G.V(); v++)
{
if (!marked[v])
prim(G, v);
}
} private void prim(EdgeWeightedGraph G, int s)
{
distTo[s] = 0.0; // 搜索起点对应的距离为 0
for (pq.insert(s, distTo[s]); !pq.isEmpty();)
{
int v = pq.delMin(); // 每次取距离最小的顶点来开花(防止同一个顶点可以有对多条边连到树上)
scan(G, v); // 注意 scan 只负责在给定的顶点上开花,不负责递归
}
} private void scan(EdgeWeightedGraph G, int v)
{
marked[v] = true;
for (Edge e : G.adj(v))
{
int w = e.other(v);
if (marked[w]) // 边 v-w 两端都被遍历过,在队列中
continue;
if (e.weight() < distTo[w]) // 边 v-w 的权值小于顶点 w 的距离,说明加入该条边后生成树的总权值会下降
{
distTo[w] = e.weight(); // 加入边 v-w,更新 distTo 和 edgeTo
edgeTo[w] = e;
if (pq.contains(w)) // 搜若索队列中已经存在 w 则更新其 distTo(键值),不存在则将 w 加入
pq.decreaseKey(w, distTo[w]);
else
pq.insert(w, distTo[w]);
}
}
} public Iterable<Edge> edges()
{
Queue<Edge> mst = new Queue<Edge>();
for (int v = 0; v < edgeTo.length; v++)// 遍历边列表,把每个顶点对应的边加入队列中
{
Edge e = edgeTo[v];
if (e != null)
mst.enqueue(e);
}
return mst;
} public double weight()
{
double weight = 0.0;
for (Edge e : edges())
weight += e.weight();
return weight;
} public static void main(String[] args)
{
In in = new In(args[0]);
EdgeWeightedGraph G = new EdgeWeightedGraph(in);
class01 mst = new class01(G);
for (Edge e : mst.edges())
StdOut.println(e);
StdOut.printf("%.5f\n", mst.weight());
}
}
《算法》第四章部分程序 part 14的更多相关文章
- 《算法》第四章部分程序 part 19
▶ 书中第四章部分程序,包括在加上自己补充的代码,有边权有向图的邻接矩阵,FloydWarshall 算法可能含负环的有边权有向图任意两点之间的最短路径 ● 有边权有向图的邻接矩阵 package p ...
- 《算法》第四章部分程序 part 18
▶ 书中第四章部分程序,包括在加上自己补充的代码,在有权有向图中寻找环,Bellman - Ford 算法求最短路径,套汇算法 ● 在有权有向图中寻找环 package package01; impo ...
- 《算法》第四章部分程序 part 16
▶ 书中第四章部分程序,包括在加上自己补充的代码,Dijkstra 算法求有向 / 无向图最短路径,以及所有顶点对之间的最短路径 ● Dijkstra 算法求有向图最短路径 package packa ...
- 《算法》第四章部分程序 part 15
▶ 书中第四章部分程序,包括在加上自己补充的代码,Kruskal 算法和 Boruvka 算法求最小生成树 ● Kruskal 算法求最小生成树 package package01; import e ...
- 《算法》第四章部分程序 part 10
▶ 书中第四章部分程序,包括在加上自己补充的代码,包括无向图连通分量,Kosaraju - Sharir 算法.Tarjan 算法.Gabow 算法计算有向图的强连通分量 ● 无向图连通分量 pack ...
- 《算法》第四章部分程序 part 9
▶ 书中第四章部分程序,包括在加上自己补充的代码,两种拓扑排序的方法 ● 拓扑排序 1 package package01; import edu.princeton.cs.algs4.Digraph ...
- 《算法》第四章部分程序 part 17
▶ 书中第四章部分程序,包括在加上自己补充的代码,无环图最短 / 最长路径通用程序,关键路径方法(critical path method)解决任务调度问题 ● 无环图最短 / 最长路径通用程序 pa ...
- 《算法》第四章部分程序 part 13
▶ 书中第四章部分程序,包括在加上自己补充的代码,图的前序.后序和逆后续遍历,以及传递闭包 ● 图的前序.后序和逆后续遍历 package package01; import edu.princeto ...
- 《算法》第四章部分程序 part 12
▶ 书中第四章部分程序,包括在加上自己补充的代码,图的几种补充数据结构,包括无向 / 有向符号图,有权边结构,有边权有向图 ● 无向符号图 package package01; import edu. ...
随机推荐
- Web Services and C# Enums
Web Service Transparency .NET support for web services is excellent in creating illusion of transpar ...
- laravel5.5 excel的安装和使用
在项目开发中 最常用的就是把数据导出成excel的文件报表了 然而新下的项目中啥也没有;没有excel的扩展 会报这个错误 然后你需要通过composer安装这个依赖 学习源头:https://www ...
- 黄聪:Pjax 无刷新开发web,更好用户体验
什么Ajax.Pjax.Njax...神马玩意? 有Njax吗? 木有...不过真有Pjax!! 其实pjax就是用到了html5的新history api: pushState和replaceSta ...
- VirtualBox中挂载物理磁盘
注1. 详细内容请参考VirtualBox帮助文件. 注2. 需对dos命令有一定了解. 注3. 以下命令均需以管理员身份执行,VirtualBox也需以管理员身份运行. 主要应用host上的vbox ...
- [LeedCode]921. 使括号有效的最少添加
题目描述: 给定一个由 '(' 和 ')' 括号组成的字符串 S,我们需要添加最少的括号( '(' 或是 ')',可以在任何位置),以使得到的括号字符串有效. 从形式上讲,只有满足下面几点之一,括号字 ...
- STL进阶--vector vs deque
vector class Dog; // 例 1: vector<Dog> vec(6); // vec.capacity() == 6, vec.size() == 6, // 默认构造 ...
- C++进阶--构造函数和析构函数中的虚函数
//############################################################################ /* 任何时候都不要在构造函数或析构函数中 ...
- bzoj4939: [Ynoi2016]掉进兔子洞
将权值排序,设权值x排序后在[l,r]出现,x在区间中出现k次,则用[l,l+k-1]为1,[l+k,r]为0来表示x的出现次数 用bitset表示可重集中每个元素的出现次数,用莫队处理出询问区间对应 ...
- 学习笔记之Java
Java (programming language) - Wikipedia https://en.wikipedia.org/wiki/Java_(programming_language) Ja ...
- mybatisz中一个可以替代between..and 的技巧
用mybatis进行时间段筛选时,如果,查询本日,本月的信息量,我们可以使用like concat()函数来替换between..and <select id="queryMyStaf ...