bzoj 1143
求最长反链裸题
补充一点知识。。
链 : D 中的一个子集 C 满足 C 是全序集 及C中所有元素都可以比较大小
反链 : D 中的一个子集 B 满足 B 中任意非空子集都不是全序集 即所有元素之间都不可以比较大小
链覆盖 : 若干个链的并集为 D ,且两两之间交集为 ∅
反链覆盖 : 若干个反链的并集为 D ,且两两之间交集为∅
最长链 : 所有链中元素个数最多的 (可以有多个最长链)
最长反链 : 所有反链中元素个数最多的 (可以有多个最长反链
偏序集高度 : 最长链的元素个数
偏序集宽度 : 最长反链中的元素个数
最长反链等于最小链覆盖, 最小链覆盖可以用二分图匹配求。
#include<bits/stdc++.h>
#define LL long long
#define fi first
#define se second
#define mk make_pair
#define pii pair<int,int> using namespace std; const int N=+;
const int M=1e4+;
const int inf=0x3f3f3f3f;
const LL INF=0x3f3f3f3f3f3f3f3f;
const int mod=1e9 + ; int n, m, match[N];
bool d[N][N], vis[N];
bool edge[N][N]; int path(int u) {
for(int v = ; v <= n; v++) {
if(edge[u][v] && !vis[v]) {
vis[v] = true;
if(match[v] == - || path(match[v])) {
match[v] = u;
return ;
}
}
}
return ;
}
int main() {
memset(match, -, sizeof(match));
scanf("%d%d", &n, &m);
for(int i = ; i <= m; i++) {
int u, v; scanf("%d%d", &u, &v);
d[u][v] = true;
}
for(int k = ; k <= n; k++) {
for(int i = ; i <= n; i++) {
for(int j = ; j <= n; j++) {
d[i][j] |= d[i][k] && d[k][j];
}
}
} for(int i = ; i <= n; i++) {
for(int j = ; j <= n; j++) {
if(d[i][j] && i != j) {
edge[i][j] = ;
}
}
} int ans = n;
for(int i = ; i <= n; i++) {
memset(vis, false, sizeof(vis));
if(path(i)) ans--;
}
printf("%d\n", ans);
return ;
}
/*
*/
bzoj 1143的更多相关文章
- [BZOJ 1143] [CTSC2008] 祭祀river 【最长反链】
题目链接:BZOJ - 1143 题目分析 这道题在BZOJ上只要求输出可选的最多的祭祀地点个数,是一道求最长反链长度的裸题. 下面给出一些相关知识: 在有向无环图中,有如下的一些定义和性质: 链:一 ...
- BZOJ 1143 1143: [CTSC2008]祭祀river 最长反链
1143: [CTSC2008]祭祀river Description 在遥远的东方,有一个神秘的民族,自称Y族.他们世代居住在水面上,奉龙王为神.每逢重大庆典, Y族都会在水面上举办盛大的祭祀活动. ...
- BZOJ 1143: [CTSC2008]祭祀river 最大独立集
题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=1143 题解: 给你一个DAG,求最大的顶点集,使得任意两个顶点之间不可达. 把每个顶点v ...
- BZOJ 1143: [CTSC2008]祭祀river 最长反链
1143: [CTSC2008]祭祀river Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline ...
- Bzoj 2718: [Violet 4]毕业旅行 && Bzoj 1143: [CTSC2008]祭祀river 传递闭包,二分图匹配,匈牙利,bitset
1143: [CTSC2008]祭祀river Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1878 Solved: 937[Submit][St ...
- BZOJ 1143 祭祀
Description 在遥远的东方,有一个神秘的民族,自称Y族.他们世代居住在水面上,奉龙王为神.每逢重大庆典, Y族都会在水面上举办盛大的祭祀活动.我们可以把Y族居住地水系看成一个由岔口和河道组成 ...
- BZOJ 1143 [CTSC2008]祭祀river(二分图匹配)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1143 [题目大意] 给出一张有向图,问最大不连通点集,连通具有传递性 [题解] 我们将 ...
- BZOJ 1143: [CTSC2008]祭祀river(最大独立集)
题面: https://www.lydsy.com/JudgeOnline/problem.php?id=1143 一句话题意:给一个DAG(有向无环图),求选出尽量多的点使这些点两两不可达,输出点个 ...
- BZOJ 1143: [CTSC2008]祭祀river(二分图最大点独立集)
http://www.lydsy.com/JudgeOnline/problem.php?id=1143 题意: 思路: 二分图最大点独立集,首先用floyd判断一下可达情况. #include< ...
- bzoj 1143 二分图最大独立集
我们可以将一个点拆成两个点x,y,那么如果存在一条i->j的路径,我们就连接xi,yj,那么答案就是n-最大匹配数. 因为i->j所以对于i与j只能选一个,那么我们只需要求出来二分图的最大 ...
随机推荐
- 【BZOJ3832】[POI2014]Rally(拓扑排序,动态规划)
[BZOJ3832][POI2014]Rally(拓扑排序,动态规划) 题面 BZOJ,权限题 洛谷 题解 这题好强啊,感觉学了好多东西似的. 首先发现了一个图画的很好的博客,戳这里 然后我来补充一下 ...
- 【BZOJ1414】[ZJOI2009]对称的正方形(哈希)
[BZOJ1414][ZJOI2009]对称的正方形(哈希) 题面 BZOJ 洛谷 题解 深思熟虑一波,发现一个矩阵如果左右对称的话,那么它每行都是一个回文串,同理,如果上下对称的话,那么每列都是一个 ...
- [JSOI2008]魔兽地图
Description DotR里面的英雄只有一个属性——力量. 他们需要购买装备来提升自己的力量值,每件装备都可以使佩戴它的英雄的力量值提高固定的点数,所以英雄的力量值等于它购买的所有装备的力量值之 ...
- (转)JDK工具-javadoc命令
背景:最近在学习java基础知识,看到文档注释部分,一种是在dos命令下生成api文件,另一种是在eclipse下生成api文件.dos方式在<疯狂java讲义>中有详细的说明,eclip ...
- Scala进阶之路-为什么要学习Scala以及开发环境搭建
Scala进阶之路-为什么要学习Scala以及开发环境搭建 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 最近人工智能和大数据那是相当的火呀,人工智能带动了Python的流行,区块 ...
- Java基础-反射(reflect)技术详解
Java基础-反射(reflect)技术详解 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.类加载器 1>.JVM 类加载机制 如下图所示,JVM类加载机制分为五个部分 ...
- np.random.rand均匀分布随机数和np.random.randn正态分布随机数函数使用方法
np.random.rand用法 觉得有用的话,欢迎一起讨论相互学习~Follow Me 生成特定形状下[0,1)下的均匀分布随机数 np.random.rand(a1,a2,a3...)生成形状为( ...
- swift学习笔记3
1.在 Swift 中,枚举类型是一等(first-class)类型.它们采用了很多在传统上只被类(class)所支持的特性,例如计算型属性(computed properties),用于提供枚举值的 ...
- 谷歌AMP和百度MIP是什么鬼?
首先我们来看定义: 谷歌AMP(Accelerated Mobile Pages,加速移动页面)是Google推出的一种为静态内容构建 web 页面,提供可靠和快速的渲染,加快页面加载的时间,特别是在 ...
- WebSockets Tutorial(教程一)WebSockets简介
一.WebSockets简介 以字面意思来说,握手可以被定义为两个人抓住和握手右手,象征着问候,祝贺,同意或告别.在计算机科学中,握手是确保服务器与客户端同步的过程.握手是Web Socket协议的基 ...