反向传播和梯度下降这两个词,第一眼看上去似懂非懂,不明觉厉。这两个概念是整个神经网络中的重要组成部分,是和误差函数/损失函数的概念分不开的。

神经网络训练的最基本的思想就是:先“蒙”一个结果,我们叫预测结果a,看看这个预测结果和事先标记好的训练集中的真实结果y之间的差距,然后调整策略,再试一次,这一次就不是“蒙”了,而是有依据地向正确的方向靠近。如此反复多次,一直到预测结果和真实结果之间相差无几,亦即|a-y|->0,就结束训练。

在神经网络训练中,我们把“蒙”叫做初始化,可以随机,也可以根据以前的经验给定初始值。即使是“蒙”,也是有技术含量的。

通俗地理解反向传播

举个通俗的例子,Bob拿了一支没有准星的步枪,或者是准星有bug,或者是Bob眼神儿不好看不清靶子,或者是雾很大......反正就是Bob很倒霉。第一次试枪后,拉回靶子一看,弹着点偏左了,于是在第二次试枪时,Bob就会有意识地向右侧偏几毫米,再看靶子上的弹着点,如此反复几次,Bob就会掌握这支步枪的脾气了。下图显示了Bob的5次试枪过程:

在这个例子中:

  • 每次试枪弹着点和靶心之间的差距就叫做误差,可以用一个误差函数来表示,比如差距的绝对值,如图中的红色线。
  • 一共试枪5次,就是迭代/训练了5次的过程 。
  • 每次试枪后,把靶子拉回来看弹着点,然后调整下一次的射击角度的过程,叫做反向传播。注意,把靶子拉回来看和跑到靶子前面去看有本质的区别,后者容易有生命危险,因为还有别的射击者。一个不恰当的比喻是,在数学概念中,人跑到靶子前面去看,叫做正向微分;把靶子拉回来看,叫做反向微分。
  • 每次调整角度的数值和方向,叫做梯度。比如向右侧调整1毫米,或者向左下方调整2毫米。如图中的绿色矢量线。

上图是每次单发点射,所以每次训练样本的个数是1。在实际的神经网络训练中,通常需要多个样本,做批量训练,以避免单个样本本身采样时带来的误差。在本例中,多个样本可以描述为连发射击,假设一次可以连打3发子弹,每次的离散程度都类似,如下图所示:

  • 如果每次3发子弹连发,这3发子弹的弹着点和靶心之间的差距之和再除以3,叫做损失,可以用损失函数来表示。

其实损失就是所有样本的误差的总和,所以有时候损失函数可以和误差函数混用概念。

其实射击还不这么简单,如果是远距离狙击,还要考虑空气阻力和风速,在神经网络里,空气阻力和风速可以对应到隐藏层的概念上。

用数学概念理解反向传播

我们再用一个纯数学的例子来说明反向传播的概念。

假设我们有一个函数 z=x∗y,其中:x=w∗2+b,y=b+1,即:z=(w∗2+b)∗(b+1)z=x∗y,其中:x=w∗2+b,y=b+1,即:z=(w∗2+b)∗(b+1)

关系如下图:

注意这里x, y, z不是变量,w, b是才变量,因为在神经网络中,我们要最终求解的是w和b的值,x,y,z只是样本值。

当w = 3, b = 4时,会得到如下结果

最终的z值,受到了前面很多因素的影响:变量w,变量b,计算式x,计算式y。常数是个定值,不考虑。目前的z=50,如果我们想让z变大一些,w和b应该如何变化呢?

我们从z开始一层一层向回看,图中各节点关于变量b的偏导计算结果如下图:

因为z = x * y,其中x = w * 2 + b,y = b + 1
所以:

∂z∂b=∂z∂x∗∂x∂b+∂z∂y∗∂y∂b=5∗1+10∗1=15

其中:

∂z∂x=∂∂x(x∗y)=y=5
∂z∂y=∂∂y(x∗y)=x=10
∂x∂b=∂∂b(w∗2+b)=1
∂y∂b=∂∂b(b+1)=1

有一个很有趣的问题是:z = x * y = 10 * 5 = 50,表面看起来x=10,y=5,似乎x对z的贡献较大。那么x的微小变化和y的微小变化对z来说,哪一个贡献大呢?

我们假设只有x变化时,△x = 0.1, 则z = (x + △x) * y = 10.1 * 5 = 50.5

我们再假设只有y变化时,△y = 0.1, 则z = x * (y +△y) = 10 * 5.1 = 51

50.5 < 51,说明y的微小变化对z的贡献比较大,这个从

∂z∂x=∂∂x(x∗y)=5<∂z∂y=∂∂y(x∗y)=10

和这两个值的比较来看也可以证明。而△x和△y就可以理解为梯度值。

同理,我们也可以得到图中各变量对w的偏导值:

从以上两图可以看出,反向微分保留了所有变量(包括中间变量)对结果z的影响。若z为误差函数,则对图进行一次计算,可以得到所有节点对z的影响,即梯度值,下一步就可以利用这些梯度值来更新w和b的权重。

w的变化和b的变化,哪一个对z的变化贡献大?从图中还可以注意到:

∂z∂b=15
∂z∂w=10

所以每次w和b的变化值是不相同的,b的变化会比w大一些,也就是每一步的跨度大一些,这个是与z = xy = (w2+b)*(b+1)这个算式相关的,并不代表神经网络中实际情况。

反向传播的实际计算过程(单变量)

还是用上面的例子,目前:

  • w=3w=3
  • b=4b=4
  • x=w∗2+b=10x=w∗2+b=10
  • y=b+1=5y=b+1=5
  • z=x∗y=50z=x∗y=50

假设我们最终的目的想让z = 60,只改变b的值,如何实现?
答案就是偏导数:

∂z∂b=ΔzΔb=15

目前z=50, 距离60相差10,所以我们令Δz=60−50=10Δz=60−50=10,则:

ΔzΔb=15=10ΔbΔzΔb=15=10Δb

所以:

Δb=0.66667Δb=0.66667

再带入式子中(顺便说一句,下面这个计算过程就叫做前向计算

  • w=3
  • b=4+0.66667=4.66667
  • x=w∗2+b=10.66667
  • y=b+1=5.66667
  • z=x∗y=10.66667∗5.66667=60.4445

一下子超过60了,咋办?再来一次(下面的过程就叫做反向传播):

我们令Δz=60−60.4445=−0.4445,则:

ΔzΔb=15=−0.4445Δb

所以:

Δb=−0.02963

再带入式子中:

  • w=3
  • b=4.66667−0.02963=4.63704
  • x=w∗2+b=10.63704
  • y=b+1=5.63704
  • z=x∗y=10.63704∗5.63704=59.96

咦哈!59.96了!再迭代几次,应该可以近似等于60了,直到误差不大于0.00001时,我们就可以结束迭代了,对于计算机来说,这些运算的执行速度很快。

有的同学会说了:这个问题不是用数学公式倒推求解一个二次方程,就能直接得到准确的b值吗?是的!但是我们是要说明机器学习的方法,机器并不会解二次方程,而且很多时候不是用二次方程就能解决实际问题的。而上例所示,是用机器所擅长的迭代计算的方法来不断逼近真实解,这就是机器学习的真谛!而且这种方法是普遍适用的。

用二维平面函数说明梯度下降原理

很多资料中会用下面这个图来说明梯度下降,但是都没有说清楚以下几个问题:

1) 为啥用这个看上去像y=x2y=x2族的函数来说明梯度下降?
2) 在最低点的左侧,梯度值是负数;在最低点的右侧,梯度值是正数。为什么说是“下降”?
3) 为什么1—>2,2—>3等等的连线不是这条曲线的切线呢,而好像是弦线?

为何用y=x2y=x2函数?

这是因为有一种损失函数的形式就是均方差,亦即:

loss=∑i(ai−yi)2

其中a是本次迭代的预测结果,y是样本中的真实结果。我们的目的就是在这个函数上求最小值,使loss最小,这样样本值和预测值就会非常非常接近,以便于我们以后预测不在样本中的真实数据。

为什么说是“梯度下降”?

“梯度下降”,刚接触这个词时,我总是往“降低难度”或“降低维度”方面去理解,因为有个“下降”的动词在里面。而实际上,“下降”在这里面的含义是“与导数相反的方向”的意思。

我们假设上面这个图形的函数是y=(x−1)2+0.001y=(x−1)2+0.001,则y′x=2(x−1)yx′=2(x−1)。

  • 在点B上,这个函数的切线(绿色)是指向下方的(Y轴方向),所以是个负数:假设XBXB = 0.1, 则y′=2∗(0.1−1)=−1.8y′=2∗(0.1−1)=−1.8。
  • 在F点上,切线(绿色)向上:假设XFXF = 1.5, 则y′=2∗(1.5−1)=1y′=2∗(1.5−1)=1,是个正数。

而在标准的权重更新公式里:

w=w–η∗Δw
b=b–η∗Δb

可以看到无论是w还是b,都是用上一次的权重值减去步长××梯度。注意,我们在上一个例子中,是用b直接加减ΔbΔb的,并没有用到η,或者说η=1。这样的问题就是步长可能过大,一下子就跳过了极值点。

  • 当梯度(y')是正数时,即点F的位置,x=x−η∗1x=x−η∗1,切线向上,x值会变小,权重值会从右侧向x=1靠近;
  • 当梯度(y')是负数时,亦即点B的位置,切线向下,x值会变大:x=x−η∗(−1.8)=x+η∗1.8x=x−η∗(−1.8)=x+η∗1.8,最终运算结果变成了加法,与切线方向相反,权重值会从左侧向x=1靠近。

所以总体上看,无论x在极值的左侧还是右侧,都会向中间(坡底)靠拢,确实是“下降”了。

不知不觉中,我们已经接触到了第一个神经网络中的超参η,即步长值,这个值对于神经网络训练非常重要,决定了训练时间的长短,它的取值一般是从0.1到0.0001,自己选择。

曲线和弦线的关系?

  1. 我们先知道了A点的切线的方向,亦即黄色的线,但是不知道长度
  2. 我们有步长值η,以及梯度下降公式X1=X0–η∗dxX1=X0–η∗dx
  3. 因为y′x的导数dx=2(X−1),η=0.1,X0=0.2,于是有X1=X0–0.1∗2(X0−1)=0.36yx′的导数dx=2(X−1),η=0.1,X0=0.2,于是有X1=X0–0.1∗2(X0−1)=0.36,这就等同于我们知道了切线的长度,亦即绿色的线的长度和方向都确定了
  4. 然后我们可以画出红色的线(亦即弦线)

所以,弦线在这里面没啥用途,只是表示一个迭代跳跃的动作而已。实际的变化值已经由绿色的线定义好了。

[AI]神经网络章2 神经网络中反向传播与梯度下降的基本概念的更多相关文章

  1. [ch02-00] 反向传播与梯度下降的通俗解释

    系列博客,原文在笔者所维护的github上:https://aka.ms/beginnerAI, 点击star加星不要吝啬,星越多笔者越努力. 第2章 神经网络中的三个基本概念 2.0 通俗地理解三大 ...

  2. 第二节,神经网络中反向传播四个基本公式证明——BackPropagation

    假设一个三层的神经网络结构图如下: 对于一个单独的训练样本x其二次代价函数可以写成: C = 1/2|| y - aL||2 = 1/2∑j(yj - ajL)2 ajL=σ(zjL) zjl = ∑ ...

  3. 【python实现卷积神经网络】卷积层Conv2D反向传播过程

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  4. <反向传播(backprop)>梯度下降法gradient descent的发展历史与各版本

    梯度下降法作为一种反向传播算法最早在上世纪由geoffrey hinton等人提出并被广泛接受.最早GD由很多研究团队各自发表,可他们大多无人问津,而hinton做的研究完整表述了GD方法,同时hin ...

  5. 如何理解反向传播 Backpropagation 梯度下降算法要点

    http://colah.github.io/posts/2015-08-Backprop/ http://www.zhihu.com/question/27239198 待翻译 http://blo ...

  6. 吴恩达深度学习笔记(deeplearning.ai)之循环神经网络(RNN)(三)

    1. 导读 本节内容介绍普通RNN的弊端,从而引入各种变体RNN,主要讲述GRU与LSTM的工作原理. 事先声明,本人采用ng在课堂上所使用的符号系统,与某些学术文献上的命名有所不同,不过核心思想都是 ...

  7. AI之旅(7):神经网络之反向传播

    前置知识   求导 知识地图   神经网络算法是通过前向传播求代价,反向传播求梯度.在上一篇中介绍了神经网络的组织结构,逻辑关系和代价函数.本篇将介绍如何求代价函数的偏导数(梯度). 梯度检测   在 ...

  8. NLP教程(3) | 神经网络与反向传播

    作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www.showmeai.tech/article-det ...

  9. 卷积神经网络(CNN)反向传播算法

    在卷积神经网络(CNN)前向传播算法中,我们对CNN的前向传播算法做了总结,基于CNN前向传播算法的基础,我们下面就对CNN的反向传播算法做一个总结.在阅读本文前,建议先研究DNN的反向传播算法:深度 ...

随机推荐

  1. 使用idea+gradle建立SSM项目

    目录: 一.创建一个gradle项目   二 .在gradle中创建SSM项目 一 .创建一个gradle项目 第一步: 打开我们的IDEA工具,选择创建一个新项目 第二步:这里会让你选择创建一个什么 ...

  2. Bootstrap Popover

    [Bootstrap Popover] 1.设置一个popover需要添加以下设置: 1)data-toggle="popover" 2)title="Example p ...

  3. 我的一次rsync+inotify本地数据同步示例

    环境: web工作目录:/var/www/mydafuhao git仓库目录: /var/www/mydafuhao.git/mydafuhao 需求:inotify监控git仓库目录,发现有版本更新 ...

  4. java面试:HR面

    就算技术面全都答对了,有时也会因为HR面没有认真对待而拿不到offer. HR的想法 找工作难,招人也好难.HR想要招什么样的人? 稳定.如果你跳槽频繁,HR可能会担心你干了没一年就跑路了,她又得重新 ...

  5. C library:<cctype>(ctype.h)

    1, isalnum(): check whether c is either a decimal digit or an uppercase or lowercase letter. 2, isal ...

  6. Navicat连接mysql(高级选项配置)

    .对于服务器上的mysql中存在多个数据库,我们如果全部连接显示,但是平时使用的只有一个库,那么查询的速度会很慢的.所以,今天和大师兄学习了一招.只连接一个自己使用的数据库.配合高级设置,提升很多. ...

  7. linux环境下的c++编程

    就C++开发工具而言,与Windows下微软(VC, VS2005等)一统天下相比,Linux/Unix下C++开发,可谓五花八门,各式各样.Emacs, vi, eclipse, anjuta,kd ...

  8. uniquefu Python+Selenium学习--select

    场景 在处理下拉框(select)的时候selenium给我们提供了一系列的便捷方法,我们只需要使用selenium.webdriver.support.select.Select类来稍微封装一下就好 ...

  9. Unity塔防游戏源码Warfront Defenders Playmaker Kit v1.7

    Warfront Defenders Playmaker Kit, is a World War 2 based Tower Defense game project made using Huton ...

  10. 快速了解和使用Photon Server

    https://blog.csdn.net/qq_36565626/article/details/78710787