Solution

SG函数跑一遍就过了ouo

Code

 #include<cstring>
#include<cstdio>
#include<algorithm>
#define rd read()
#define cl(a) memset(a, 0, sizeof(a));
using namespace std; const int N = << ; int SG[N], S[];
int T, n; int read() {
int X = , p = ; char c = getchar();
for(; c > '' || c < ''; c = getchar()) if(c == '-') p = -;
for(; c >= '' && c <= ''; c = getchar()) X = X * + c - '';
return X * p;
} void mkSG() {
for(int i = ; i < ; ++i) SG[i] = ;
for(int i = ; i < ( << ); ++i) {
cl(S);
int last = -, nt;
for(int j = ; j < ; ++j) if((i >> j) & ) {
if(~last) {
nt = i | ( << last);
nt ^= << j;
S[SG[nt]] = ;
}
} else last = j;
int j = ;
for(; S[j]; ++j);
SG[i] = j;
}
} int main()
{
mkSG();
T = rd;
for(; T; T--) {
n = rd;
int ans = ;
for(int i = ; i <= n; ++i) {
int m = rd, tmp = ;
for(int j = ; j <= m; ++j) {
int x = rd;
tmp |= << ( - x);
}
ans ^= SG[tmp];
}
if(ans) puts("YES");
else puts("NO");
}
}

Luogu 2575 高手过招-SG函数的更多相关文章

  1. 洛谷P2575高手过招——SG函数初试

    题目:https://www.luogu.org/problemnew/show/P2575 第一次用SG函数解决问题,有许多不熟练的地方: 试图按自己的理解写一个dfs,结果错了(连题都没读对,以为 ...

  2. 洛谷$P$2575 高手过招 博弈论

    正解:博弈论 解题报告: 传送门! 阿西$gql$又双叒被题意杀辣,,,再不好好学语文吃枣药丸$TT$ 然后在$get$规则之后还有什么问题嘛,,, 就和这题差不多了,一个$easy$的阶梯问题罢辽, ...

  3. Luogu P2575 高手过招

    题目链接 \(Click\) \(Here\) 关键在于转换成阶梯\(Nim\)的模型.最开始把题目看错了,理解正确后发现棋子可以向后跳不止一位,那么就比较简单了. 这里把空格看做阶梯,棋子看做硬币, ...

  4. BZOJ 1188 / Luogu P3185 [HNOI2007]分裂游戏 (SG函数)

    题意 有n个格子,标号为0 ~ n-1,每个格子上有若干石子,每次操作可以选一个0 ~ n-2的格子上的一颗石子,分裂为两颗,然后任意放在后面的两个格子内,这两个格子可以相同.求使先手必胜的第一步的方 ...

  5. 博弈论与SG函数

    巴什博奕: 两个顶尖聪明的人在玩游戏,有n个石子,每人可以随便拿1−m个石子,不能拿的人为败者,问谁会胜利 结论: 设当前的石子数为\(n=k∗(m+1)\)即\(n%(m+1)==0\)时先手一定失 ...

  6. P3235-[HNOI2014]江南乐【整除分块,SG函数】

    正题 题目链接:https://www.luogu.com.cn/problem/P3235 题目大意 \(T\)组游戏,固定给出\(F\).每组游戏有\(n\)个石头,每次操作的人可以选择一个数量不 ...

  7. HDU 5795 A Simple Nim 打表求SG函数的规律

    A Simple Nim Problem Description   Two players take turns picking candies from n heaps,the player wh ...

  8. 【转】博弈—SG函数

    转自:http://chensmiles.blog.163.com/blog/static/12146399120104644141326/ http://blog.csdn.net/xiaofeng ...

  9. HDU 1848 Fibonacci again and again【SG函数】

    对于Nim博弈,任何奇异局势(a,b,c)都有a^b^c=0. 延伸: 任何奇异局势(a1, a2,… an)都满足 a1^a2^…^an=0 首先定义mex(minimal excludant)运算 ...

随机推荐

  1. svn转git

    在Git Bash 中输入 git-svn clone http://devsvnread.uuzuonline.net/GOT_PRIVATE/server/ --no-metadata -T tr ...

  2. 1-keystone 部署

    https://github.com/openstack/keystone 最新版为rocky 1. 进入mysql create database keystone; grant all privi ...

  3. Ubuntu下Git从搭建到使用详解

    Ubuntu下Git从搭建到使用详解 一.git的搭建 (1).sudo apt-get update (2).sudo apt-get -y install git 符:安装最新版本方法: add- ...

  4. vim字符串替换及小技巧

    vi/vim 中可以使用 :s 命令来替换字符串.以前只会使用一种格式来全文替换,今天发现该命令有很多种写法(vi 真是强大啊,还有很多需要学习),记录几种在此,方便以后查询. :s/vivian/s ...

  5. java分解质因数,具体程序分析和代码

    题目:将一个正整数分解质因数.例如:输入90,打印出90=2*3*3*5. 将一个正整数分解质因数分析:对n进行分解质因数,找到最小的质数k如果这个质数恰好等于n则说明分解质因数过程已经结束,打印输出 ...

  6. 工单进入IN_MO后在FP_PREPROCESS被过滤

    '; --BOM and item not in IN_ITEMBOMROUTING SELECT * FROM TEMP_REMOVED_IN_DATA WHERE TABLE_NAME='IN_M ...

  7. oracle 的查询问题!!!

    问题: declare aaa integer;email varchar2(100) :='1234@aa.com';begin select count(*) into aaa from dual ...

  8. WPF背景透明内嵌WebBrowser不显示问题,即AllowsTransparency = true 和 Webbrowser 等控件显示冲突

    首先感谢两位先导者: 1. 解决 WPF AllowsTransparency = true 和 Webbrowser 等控件显示冲突 原文地址:https://www.cnblogs.com/zhi ...

  9. 常用的jquerymobil 站点

    http://www.jqmapi.com/api1.2/ Jquery Mobile 中文API站 https://codiqa.com/demo   jquerymobil UI编辑器 https ...

  10. macOS 为 Markdown 文件开启全文检索方法

    曾经的我一向使用 Evernote + 马克飞象来记载笔记和文档.不过感觉这两个东西越来越不思进取,几年都没什么变化.所以,一年多曾经,我就把一切笔记迁移成本地 Markdown 文件,合作 Drop ...