BZOJ原题链接

洛谷原题链接

显然可以用数据结构或\(ST\)表或单调队列来维护最值。

这里采用单调队列来维护。

先用单调队列维护每一行的最大值和最小值,区间长为正方形长度。

再用单调队列维护之前维护出的每行最值数组的每一列的最大值和最小值,区间同上。

最后维护出的数组其实就是以每个点为左上角的正方形中的最值,直接扫一遍求最小的差即可。

借用洛谷题解里大佬的图以更好说明:



(\(X,x\)分别是维护出原矩阵中行的最大、最小值,\(Y,y\)分别是维护\(X,x\)中列的最大、最小值)

#include<cstdio>
using namespace std;
const int N = 1010;
const int M = 2e6 + 10;
int a[N][N], ma_x[N][N], mi_x[N][N], ma_y[N][N], mi_y[N][N], qma[M], qmi[M];
inline int re()
{
int x = 0;
char c = getchar();
bool p = 0;
for (; c < '0' || c > '9'; c = getchar())
p |= c == '-';
for (; c >= '0' && c <= '9'; c = getchar())
x = x * 10 + c - '0';
return p ? -x : x;
}
inline int minn(int x, int y)
{
return x < y ? x : y;
}
int main()
{
int i, j, n, m, k, lmi, lma, rmi, rma, o, oo, mi = 1e9;
n = re();
m = re();
k = re();
for (i = 1; i <= n; i++)
for (j = 1; j <= m; j++)
a[i][j] = re();
for (i = 1; i <= n; i++)
{
lmi = lma = 1;
rmi = rma = 0;
for (j = 1; j < k; j++)
{
for (; lma <= rma && a[i][qma[rma]] <= a[i][j]; rma--);
for (; lmi <= rmi && a[i][qmi[rmi]] >= a[i][j]; rmi--);
qma[++rma] = j;
qmi[++rmi] = j;
}
for (; j <= m; j++)
{
for (; lma <= rma && j - qma[lma] + 1 > k; lma++);
for (; lmi <= rmi && j - qmi[lmi] + 1 > k; lmi++);
for (; lma <= rma && a[i][qma[rma]] <= a[i][j]; rma--);
for (; lmi <= rmi && a[i][qmi[rmi]] >= a[i][j]; rmi--);
qma[++rma] = j;
qmi[++rmi] = j;
ma_x[i][j - k + 1] = a[i][qma[lma]];
mi_x[i][j - k + 1] = a[i][qmi[lmi]];
}
}
for (i = 1, o = m - k + 1; i <= o; i++)
{
lmi = lma = 1;
rmi = rma = 0;
for (j = 1; j < k; j++)
{
for (; lma <= rma && ma_x[qma[rma]][i] <= ma_x[j][i]; rma--);
for (; lmi <= rmi && mi_x[qmi[rmi]][i] >= mi_x[j][i]; rmi--);
qma[++rma] = j;
qmi[++rmi] = j;
}
for (; j <= n; j++)
{
for (; lma <= rma && j - qma[lma] + 1 > k; lma++);
for (; lmi <= rmi && j - qmi[lmi] + 1 > k; lmi++);
for (; lma <= rma && ma_x[qma[rma]][i] <= ma_x[j][i]; rma--);
for (; lmi <= rmi && mi_x[qmi[rmi]][i] >= mi_x[j][i]; rmi--);
qma[++rma] = j;
qmi[++rmi] = j;
ma_y[j - k + 1][i] = ma_x[qma[lma]][i];
mi_y[j - k + 1][i] = mi_x[qmi[lmi]][i];
}
}
for (i = 1, o = n - k + 1, oo = m - k + 1; i <= o; i++)
for (j = 1; j <= oo; j++)
mi = minn(mi, ma_y[i][j] - mi_y[i][j]);
printf("%d", mi);
return 0;
}

BZOJ1047或洛谷2216 [HAOI2007]理想的正方形的更多相关文章

  1. 洛谷 2216 [HAOI2007]理想的正方形

    题目戳这里 一句话题意 给你一个a×b的矩形,求一个n×n的子矩阵,矩阵里面的最大值和最小值之差最小. Solution 这个题目许多大佬都是单调队列,但是我不是很会,只好用了比较傻逼的方法: 首先我 ...

  2. 洛谷 P2216 [HAOI2007]理想的正方形

    P2216 [HAOI2007]理想的正方形 题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: 第一 ...

  3. 洛谷P2216: [HAOI2007]理想的正方形 单调队列优化DP

    洛谷P2216 )逼着自己写DP 题意: 给定一个带有数字的矩阵,找出一个大小为n*n的矩阵,这个矩阵中最大值减最小值最小. 思路: 先处理出每一行每个格子到前面n个格子中的最大值和最小值.然后对每一 ...

  4. 洛谷P2216 HAOI2007 理想的正方形 (单调队列)

    题目就是要求在n*m的矩形中找出一个k*k的正方形(理想正方形),使得这个正方形内最值之差最小(就是要维护最大值和最小值),显然我们可以用单调队列维护. 但是二维平面上单调队列怎么用? 我们先对行处理 ...

  5. 【DP】【单调队列】洛谷 P2216 [HAOI2007]理想的正方形 题解

        算是单调队列的复习吧,不是很难 题目描述 有一个$a\times b$的整数组成的矩阵,现请你从中找出一个$n\times n$的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入 ...

  6. [洛谷P2216][HAOI2007]理想的正方形

    题目大意:有一个$a\times b$的矩阵,求一个$n\times n$的矩阵,使该区域中的极差最小. 题解:二维$ST$表,每一个点试一下是不是左上角就行了 卡点:1.用了一份考试时候写的二维$S ...

  7. 洛谷 P2216 [HAOI2007]理想的正方形 || 二维RMQ的单调队列

    题目 这个题的算法核心就是求出以i,j为左上角,边长为n的矩阵中最小值和最大值.最小和最大值的求法类似. 单调队列做法: 以最小值为例: q1[i][j]表示第i行上,从j列开始的n列的最小值.$q1 ...

  8. [Luogu 2216] [HAOI2007]理想的正方形

    [Luogu 2216] [HAOI2007]理想的正方形 题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输 ...

  9. 洛谷 P2216 [HAOI2007]理想正方形

    洛谷 巨说这是一道单调队列好题,但是我并不是用单调队列做的诶. 如果往最暴力的方向去想,肯定是\(n^3\)的\(dp\)了. \(f[i][j][k]\)代表当前正方形的左上角定点是\((i,j)\ ...

随机推荐

  1. 安装mysql 初始化的时候报错 Can't find file: './mysql/db.frm' (errno: 13) ERROR: 1017

    目录下没有权限 需要权限

  2. hibernate flush clear的区别

    有的时候你执行了更新什么的操作不一定能查出来:没有保存到数据库 以下的缓存是指一级缓存,即session:默认缓存是一级缓存: flush的意思就是执行sql,但是还没有commit,没有持久化:再清 ...

  3. 部署Java的运行环境

    1.先去官网下载最新的jdk 网址:http://www.oracle.com/technetwork/java/javase/downloads/ 2.用tar zxvf解压相应的文档到相应的路径 ...

  4. 微信小程序实现滚动分页加载更多

    参考网址:https://www.cnblogs.com/Smiled/p/8203306.html 1.wxml: <view class='myScroll' style='float:le ...

  5. php使用redis扩展以及安装redis(linux下)

    一,安装redis 1,下载redis包:wget http://download.redis.io/releases/redis-2.8.9.tar.gz 2,解压redis包后,进入redis-2 ...

  6. msf客户端渗透(四):关闭UAC,hash、防火墙、服务、磁盘、DEP、防病毒、远程桌面、桌面截图、获取tooken

    关闭UAC 如果你获得一个system权限的session 进入到这个session 进入到shell 依次输入以下命令 cmd.exe /k %windir%\System32\reg.exe AD ...

  7. metasploit framework(十一):获取漏洞信息

    查看参数 这个模块运行需要一个session 所以需要先获取到一个session 就获得了一个session 再回到枚举补丁模块 添加session 查看参数看到session已经添加上去了 run ...

  8. 第四章 栈与队列(c5)栈应用:逆波兰表达式

  9. 三星笔记本安装系统时报错:image failed to verify with * access denied* press any key to continue.

    安装系统从光盘启动报错: 出现黑屏,并且有一个提示框image failed to verify with *access denied*press any key to continue 原因:三星 ...

  10. Jenkins-cli基本用法

    基本的格式为 java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args] 下面具体介绍各个命令的作用及基本使用方法 1.    ...