Hive和并行数据仓库的比较
最近分析和比较了Hive和并行数据仓库的架构,本文记下一些体会。
Hive是架构在Hadoop MapReduce Framework之上的开源数据分析系统。 Hive具有如下特点:
1. 数据以HDFS文件的形式存储,从而可以很方便的使用外部文件
2. 元数据存储独立于数据存储之外,从而解耦合元数据和数据,同样的数据,不同的用户可以有不同的元数据
3. 查询计划被分解为多个MapReduce Job,并按照依赖关系依次执行,复用了MapReduce的执行架构
4. 灵活的存储格式,通过ObjectInspector将对数据列的访问与数据的具体存储格式解耦合,同一行数据在同一个数据处理流中可以以不同的格式出现
5. 基于规则的查询优化器,依次使用规则转换逻辑计划
下面,我们就把Hive跟传统的并行数据仓库进行一下深入的比较:
1. 存储引擎。 并行数据仓库需要先把数据装载到数据库中,按特定的格式存储成特定的页文件,然后才能查询;而Hive则不用装载数据,也不用格式转换,Hive内置了多种文件格式的支持,并且可以使用用户定制的格式实现(inputformat),这样大大节省了数据导入的开销。传统数据仓库是把数据导入系统中,而Hive则是动态的将对数据处理的逻辑(代码)导入系统中。
2. 执行引擎。Hive架构于MapReduce Framework之上,执行计划的灵活性较差,优化器可做的选择很少,例如:Join算法只有Grace Hash Join一种选择,性能更加优秀且稳定的Hybrid Hash Join则无法实现; Map端的Group-by算法只有Hash Group-by一种选择, Reduce端的Group-by只有sort group-by一种选择(不然MapReduce提供的sort就浪费了); limit无法和sort融合起来,很多情况下,用堆排序来融合limit与sort会更加高效。
Join, Group-by, Limit在OLAP,日志分析等任务中非常常用的Operator,而Hive在这3个Operator的实现上都依赖于MapReduce Frameowork提供的partition和sort,好处是实现比较简单,缺点是效率往往不是最优的。 然而,由于MapReduce数据处理流程的限制,效率更高的算法却无法实现。 相反,并行数据仓库实现了各种算法,它的查询优化器可以更加灵活的选择这3个Operator的不同实现。
3. 查询优化器。大多数商用数据仓库使用基于代价的优化器,在生成查询计划时,利用元数据中的统计信息估算每个operator要处理的数据量,选取代价较低的执行计划。不过,这些商用数据仓库的都起步于基于规则的查询优化器,而Hive正处于这样一个类似的起步阶段。因而Hive查询优化器能做的优化并不多,仅限于10几条转换规则。
4. 索引和缓冲管理。 对于查询来说,索引的作用至关重要,尽管Hive中的partition起到和索引类似的作用,但还比较初级,与并行数据仓库较为完善的索引(primary,secondary, clustered, unclustered)还有很大差距。 当然,Hive也没有缓冲区管理机制,只能依赖于文件系统的缓冲机制;并行数据仓库往往禁用操作系统的缓冲机制,针对不同的查询的特点设计了多种缓冲机制,从而优化了性能。
5. 并行扩展性。MapReduce将MR job的中间结果保存到Map Task的本地硬盘,从而MR Job的容错性非常好,Hive自然的利用了这一点;Hive执行计划中,每一个MapReduce job又把处理结果写到HDFS,从而又利用了HDFS的容错性。 这样,在一个Hive查询的执行中,如果某个节点出现故障了,只需要重新调度执行该节点的任务即可,不需要重新提交查询。 因此,Hive有非常好的intra-query fault-tolerance,所以可扩展性非常强,例如一个查询可以在4000个节点上同时跑;缺点是大大减少了pipeline
parallelism的机会。 并行数据仓库往往采用的是pipeline架构,上游的Operator每产生一条数据就会送去下游的Operator。这样的好处是最大化了pipeline parallelism并避免了中间结果的磁盘读写,但是,当一个查询运行于并行数据库上时,一旦一个节点出现故障,并行数据仓库就必须重新执行该查询。所以,当一个集群中的单点故障发生率较高时,并行数据仓库的性能就会下降了。假设每个节点故障发生率是0.01%,那么1000个节点的集群中,单点故障发生率则为10%;假设每个节点故障发生率是0.0001%,那么5000个节点的集群中,单点故障发生率为0.5%!
6. 内存拷贝开销。 千万别小看这一点,内存拷贝会很大程度上拖累系统性能。 我们可以注意到,Hive中所有的哈希,比较,数值运算操作,都需要操作在Writable Object上,而每次重置(reset)这些Writable Object,都需要将数据从byte array拷贝到这些对象的byte[]成员中。 在更精巧的实现中,很多内存拷贝其实是可以避免的,并行数据仓库往往做了很多优化(甚至包含操作系统内核的优化,比如Teradata的PDE)去节省不必要的内存拷贝,从而又带来了性能提升。
在实际应用中,到底该选用Hive还是并行数据仓库,取决于这些:
1. 钱,Hive是开源的,并行数据仓库(db2, teradata, netezza, vertica)是非常昂贵的
2. 还是钱,Hive只需要普通机器集群,并且集群节点的操作系统和硬件都可以是异构的,单点故障发生率高也无所谓;并行数据仓库往往希望使用性能较高的服务器作为集群节点,从而单点故障发生率可以控制在一个非常低的范围。
3. 数据规模,如果是Google, Facebook, Baidu这种规模的应用,需要几千甚至上万节点的集群,目前的商业并行数据仓库产品就很难支撑了;如果是沃尔玛,eBay这些应用,并行数据仓库还是完全可以胜任的,并且性能会远优于Hive。
此文旨在抛砖引玉,欢迎大家进行更多的比较:-)
=============================================================
另补充我的一些观点:
Hive本意是在Hadoop的MapReduce编程模型上进行包装,使其支持声明式的SQL查询,其各种opr都是使用MapReduce模型模拟实现。这样的好处就是与Hadoop无缝融合,但是,MapReduce模型最适用的场景是聚集类的操作,即数据库中的Group By,其模型并不是为Join量身打造,即使能够通过设计实现Join操作,但是效率以及可选择性上也大大折扣,有点削足适履的感觉。
我觉得如果不拘束在MapReduce模型上,而是对于各种操作寻求最合适的模型而不是拘束在MapReduce模型上,但是充分吸收其Fault Tolerance的特性,可能会较好。
但是,Fault Tolerance的满足需要对中间结果进行物化,这与Pipeline又会矛盾。两者需要寻找一个平衡点。我觉得部分物化、部分Pipeline的方式也许是一种选择,类似于checkpoint。这样Fault Tolerance的粒度不是MapReduce模式下的单个操作,也不是Pipeline模式下的整个查询,而是居中,即查询中的子操作块。
总的感觉,Hive的工作更倾向于工程,而不是模式的创新。但是作为初级产品,还是很有意义的。
Hive和并行数据仓库的比较的更多相关文章
- Hive分布式的数据仓库
1.hive介绍 hive是一个数据仓库的解决方案,它的数据存储依赖于HDFS,数据结算依赖于MR,也就是说,hive就是一个在数据仓库的服务,它只需要安装到一台普通的PC上即可,仅仅对外提供SQL服 ...
- 基于hadoop的数据仓库工具:Hive概述
Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供完整的sql查询功能,可以将sql语句转换为MapReduce任务进行运行.其优点是学习成本低,可以通过类 ...
- hive数据仓库入门到实战及面试
第一章.hive入门 一.hive入门手册 1.什么是数据仓库 1.1数据仓库概念 对历史数据变化的统计,从而支撑企业的决策.比如:某个商品最近一个月的销量,预判下个月应该销售多少,从而补充多少货源. ...
- 漫谈数据仓库之拉链表(原理、设计以及在Hive中的实现)
本文将会谈一谈在数据仓库中拉链表相关的内容,包括它的原理.设计.以及在我们大数据场景下的实现方式. 全文由下面几个部分组成: 先分享一下拉链表的用途.什么是拉链表. 通过一些小的使用场景来对拉链表做近 ...
- 一个数据仓库时代开始--Hive
一.什么是 Apache Hive? Apache Hive 是一个基于 Hadoop Haused 构建的开源数据仓库系统,我们使用它来查询和分析存储在 Hadoop 文件中的大型数据集.此外,通过 ...
- 数据仓库与hive
数据仓库与hive hive--数据仓库建模工具之一 一.数据库.数据仓库 1.1 数据库 关系数据库本质上是一个二元关系,说的简单一些,就是一个二维表格,对普通人来说,最简单的理解就是一个Excel ...
- Hive学习笔记(一)
摘要: Hive 是建立在 Hadoop 上的数据仓库基础构架.它提供了一系列的工具,可以用来进行数据提取转化加载(ETL),这是一种可以存储.查询和分析存储在 Hadoop 中的大规模数据的机制.H ...
- Hive介绍、安装(转)
1.Hive介绍 1.1 Hive介绍 Hive是一个基于Hadoop的开源数据仓库工具,用于存储和处理海量结构化数据.它是Facebook 2008年8月开源的一个数据仓库框架,提供了类似于SQL语 ...
- Hive与数据库的异同
一.Hive简介 Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供完整的sql查询功能,可以将sql语句转换为MapReduce任务进行运行.其优点是学习 ...
随机推荐
- cxGrid 颜色设置
一.cxGrid 根据列值变色(样式) 在使用cxGrid的过程中,某一个单元格经常需要根据其他单元格的值来做相应的变色,如: 在cxGridDBTableView中,选定要变样式(如背景色.字体属性 ...
- 尚硅谷springboot学习19-日志切换
查看相关依赖关系,排除相关依赖,引入新的日志依赖 slf4j+log4j的方式: <dependency> <groupId>org.springframework.boot& ...
- Haskell语言学习笔记(89)Unicode UTF8
unicode-show $ cabal install unicode-show Installed unicode-show-0.1.0.2 Prelude> :m +Text.Show.U ...
- OpenWrt上搭建纯L2TP服务器[ZT]
转自:http://www.openwrt.pro/post-389.html 纯L2TP(l2tp + ppp,无IPSec) 首先安装xl2tpd软件包 opkg update opkg inst ...
- 18.2 不同用户 不同颜色光标 redis
上次,我们完成了 change 这个event 通过 collaborationsrvice 与 server 进行 sockrt io 将 client端的监听的 change 发给 server ...
- C# 图像处理:获取鼠标位置信息(全局)
Point ms = Control.MousePosition; //获取鼠标位置 this.label2.Text = string.Format("{0}:{1}", ms. ...
- location search的中文加密
最近项目中遇到一个这样问题,在页面跳转时,追加了location.search,有中文字符,但是在分享第二次时,这个链接无法获取中文字段,变成乱码. 仔细对比,发现在页面分享时,浏览器自动对中文进行了 ...
- ArrayList删除--------ConcurrentModificationException问题
在做项目中用到List存储数据,在里面做数据操作时候用到了删除.结果抛出ConcurrentModificationException异常.在这里把问题总结一下. 原因: ArrayList进行for ...
- 大型运输行业实战_day14_1_webserivce简单入门
1.简单使用 1.1.服务端 1.编写接口 package com.day02.sation.ws; /** * Created by Administrator on 1/12. */ public ...
- npm run build
[npm run build] npm 会在项目的 package.json 文件中寻找 scripts 区域,其中包括npm test和npm start等命令. 其实npm test和npm st ...