Python’s with statement provides a very convenient way of dealing with the situation where you have to do a setup and teardown to make something happen. A very good example for this is the situation where you want to gain a handler to a file, read data from the file and the close the file handler. 有一些任务,可能事先需要设置,事后做清理工作。对于这种场景,Python的with语句提供了一种非常方便的处理方式。一个很好的例子是文件处理,你需要获取一个文件句柄,从文件中读取数据,然后关闭文件句柄。 Without the with statement, one would write something along the lines of: 如果不用with语句,代码如下:

1
2
3
file = open("/tmp/foo.txt")
data = file.read()
file.close()

There are two annoying things here. First, you end up forgetting to close the file handler. The second is how to handle exceptions that may occur once the file handler has been obtained. One could write something like this to get around this: 这里有两个问题。一是可能忘记关闭文件句柄;二是文件读取数据发生异常,没有进行任何处理。下面是处理异常的加强版本:

1
2
3
4
5
file = open("/tmp/foo.txt")
try:
    data = file.read()
finally:
    file.close()

While this works well, it is unnecessarily verbose. This is where with is useful. The good thing about with apart from the better syntax is that it is very good handling exceptions. The above code would look like this, when using with: 虽然这段代码运行良好,但是太冗长了。这时候就是with一展身手的时候了。除了有更优雅的语法,with还可以很好的处理上下文环境产生的异常。下面是with版本的代码:

1
2
with open("/tmp/foo.txt") as file:
    data = file.read()

with如何工作?

while this might look like magic, the way Python handles with is more clever than magic. The basic idea is that the statement after with has to evaluate an object that responds to an __enter__() as well as an __exit__() function. 这看起来充满魔法,但不仅仅是魔法,Python对with的处理还很聪明。基本思想是with所求值的对象必须有一个__enter__()方法,一个__exit__()方法。 After the statement that follows with is evaluated, the __enter__() function on the resulting object is called. The value returned by this function is assigned to the variable following as. After every statement in the block is evaluated, the __exit__() function is called. 紧跟with后面的语句被求值后,返回对象的__enter__()方法被调用,这个方法的返回值将被赋值给as后面的变量。当with后面的代码块全部被执行完之后,将调用前面返回对象的__exit__()方法。 This can be demonstrated with the following example: 下面例子可以具体说明with如何工作:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#!/usr/bin/env python
# with_example01.py
 
 
class Sample:
    def __enter__(self):
        print "In __enter__()"
        return "Foo"
 
    def __exit__(self, type, value, trace):
        print "In __exit__()"
 
 
def get_sample():
    return Sample()
 
 
with get_sample() as sample:
    print "sample:", sample

When executed, this will result in: 运行代码,输出如下

1
2
3
4
bash-3.2$ ./with_example01.py
In __enter__()
sample: Foo
In __exit__()

As you can see, The __enter__() function is executed The value returned by it - in this case "Foo" is assigned to sample The body of the block is executed, thereby printing the value of sample ie. "Foo" The __exit__() function is called. What makes with really powerful is the fact that it can handle exceptions. You would have noticed that the __exit__() function for Sample takes three arguments - val, type and trace. These are useful in exception handling. Let’s see how this works by modifying the above example. 正如你看到的, 1. __enter__()方法被执行 2. __enter__()方法返回的值 - 这个例子中是"Foo",赋值给变量'sample' 3. 执行代码块,打印变量"sample"的值为 "Foo" 4. __exit__()方法被调用 with真正强大之处是它可以处理异常。可能你已经注意到Sample类的__exit__方法有三个参数- val, type 和 trace。 这些参数在异常处理中相当有用。我们来改一下代码,看看具体如何工作的。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#!/usr/bin/env python
# with_example02.py
 
 
class Sample:
    def __enter__(self):
        return self
 
    def __exit__(self, type, value, trace):
        print "type:", type
        print "value:", value
        print "trace:", trace
 
    def do_something(self):
        bar = 1/0
        return bar + 10
 
with Sample() as sample:
    sample.do_something()

Notice how in this example, instead of get_sample(), with takes Sample(). It does not matter, as long as the statement that follows with evaluates to an object that has an __enter__() and __exit__() functions. In this case, Sample()’s __enter__() returns the newly created instance of Sample and that is what gets passed to sample. 这个例子中,with后面的get_sample()变成了Sample()。这没有任何关系,只要紧跟with后面的语句所返回的对象有__enter__()和__exit__()方法即可。此例中,Sample()的__enter__()方法返回新创建的Sample对象,并赋值给变量sample。 When executed: 代码执行后:

1
2
3
4
5
6
7
8
9
10
bash-3.2$ ./with_example02.py
type: <type 'exceptions.ZeroDivisionError'>
value: integer division or modulo by zero
trace: <traceback object at 0x1004a8128>
Traceback (most recent call last):
  File "./with_example02.py", line 19, in <module>
    sample.do_something()
  File "./with_example02.py", line 15, in do_something
    bar = 1/0
ZeroDivisionError: integer division or modulo by zero

Essentially, if there are exceptions being thrown from anywhere inside the block, the __exit__() function for the object is called. As you can see, the type, value and the stack trace associated with the exception thrown is passed to this function. In this case, you can see that there was a ZeroDivisionError exception being thrown. People implementing libraries can write code that clean up resources, close files etc. in their __exit__() functions. 实际上,在with后面的代码块抛出任何异常时,__exit__()方法被执行。正如例子所示,异常抛出时,与之关联的type,value和stack trace传给__exit__()方法,因此抛出的ZeroDivisionError异常被打印出来了。开发库时,清理资源,关闭文件等等操作,都可以放在__exit__方法当中。 Thus, Python’s with is a nifty construct that makes code a little less verbose and makes cleaning up during exceptions a bit easier. 因此,Python的with语句是提供一个有效的机制,让代码更简练,同时在异常产生时,清理工作更简单。

理解python的with语句的更多相关文章

  1. 转: 理解Python的With语句

    Python’s with statement provides a very convenient way of dealing with the situation where you have ...

  2. 深入理解python with语句

    python的with语句相当于try.....finally,它是如何实现的呢?下面就结合范例和伪指令的实现来分析一下. with语句会汇编成:先调用with语句后面的表达式(open(...)), ...

  3. 用一个简单的例子来理解python高阶函数

    ============================ 用一个简单的例子来理解python高阶函数 ============================ 最近在用mailx发送邮件, 写法大致如 ...

  4. 深入理解 Python 异步编程(上)

    http://python.jobbole.com/88291/ 前言 很多朋友对异步编程都处于"听说很强大"的认知状态.鲜有在生产项目中使用它.而使用它的同学,则大多数都停留在知 ...

  5. 完全理解 Python 迭代对象、迭代器、生成器

    完全理解 Python 迭代对象.迭代器.生成器 2017/05/29 · 基础知识 · 9 评论 · 可迭代对象, 生成器, 迭代器 分享到: 原文出处: liuzhijun    本文源自RQ作者 ...

  6. [转]深刻理解Python中的元类(metaclass)以及元类实现单例模式

    使用元类 深刻理解Python中的元类(metaclass)以及元类实现单例模式 在看一些框架源代码的过程中碰到很多元类的实例,看起来很吃力很晦涩:在看python cookbook中关于元类创建单例 ...

  7. python assert 断言语句的作用

    python assert 断言语句的作用 assert语句的应用场景 使用assert语句是一个很好的习惯. 我们在编写代码的时候, 不知道程序会在什么时候崩溃, 与其让它在深度运行时崩溃, 不如预 ...

  8. 深入理解Python中的yield和send

    send方法和next方法唯一的区别是在执行send方法会首先把上一次挂起的yield语句的返回值通过参数设定,从而实现与生成器方法的交互. 但是需要注意,在一个生成器对象没有执行next方法之前,由 ...

  9. 理解 python 装饰器

    变量 name = 'world' x = 3 变量是代表某个值的名字 函数 def hello(name): return 'hello' + name hello('word) hello wor ...

随机推荐

  1. Centos安装vsftp服务

    1.安装vsftp yum install vsftpd 2.开启vsftp服务,设置开机自启 service vsftpd restart chkconfig vsftpd on 停止vsftpd: ...

  2. html / css打印样式

    最近做公司后台系统,需要打印贴箱标签,按照正常打印A4纸的标准,测试的效果不是自己想要的,文字排版布局都乱了,查了一些资料,需要设置的东西我总结了一下: 显示器(screen)和打印机(printer ...

  3. Centos7下配置Redis开机自启动

    最近在做作业的时候需要用到Redis缓存,由于每次重启服务器都需要重新启动Redis,也是忒烦人,于是就有了这一篇博客,好,废话不多说. 只有两个步骤: 设置redis.conf中daemonize为 ...

  4. Missing (Mono Script), Missing Prefab

    开始研究Google Cardboard SDK,下载了一份gvr-unity-sdk,用Unity打开里面的Samples: CastleDefense,导出XCode项目在iPhone上面运行,出 ...

  5. SPSS数据分析—基于最优尺度变换的典型相关分析

    传统的典型相关分析只能考虑变量之间的线性相关情况,且必须为连续变量,而我们依然可以使用最优尺度变换来拓展其应用范围,使其可以分析非线性相关.数据为分类数据等情况,并且不再仅限于两个变量间的分析, 虽然 ...

  6. CSS3--box-shadow

    box-shadow:属性向框添加一个或多个阴影: 语法:box-shadow:h-shadow v-shadow blur pread color inset; h-shadow:必需,水平阴影的位 ...

  7. loadrunner获取当前CST时间

    第一种方法:使用LR的参数化功能. 代码如下,nowtime是保存当前CST时间的字符串变量,local_time是要参数化的变量. Action() { char *nowtime; nowtime ...

  8. 面向对象cookie增删查

    <!DOCTYPE html><html> <head> <meta charset="UTF-8"> <title>& ...

  9. 关于KINECT2 和ROS接口安装的问题

    具体安装过程见此博客 http://www.itdadao.com/articles/c15a450477p0.html 感谢博主. 注意,在我自己的电脑上,最后测试的两条代码执行不了,即:1)ros ...

  10. PHP正则表达式替换站点关键字链接后空白的问题解决

    标题这样不知道合适不合适.具体的情况是这样的:网站要增加关键字链接功能,然后需要对文章的内容进行正则表达式匹配并替换,然后使用了preg_replace函数.替换的程序代码如下: function R ...