回到目录

空间与时间

空间换时间是在数据库中经常出现的术语,简单说就是把查询需要的条件进行索引的存储,然后查询时为O(1)的时间复杂度来快速获取数据,从而达到了使用空间存储来换快速的时间响应!对于redis这个k/v存储系统来说,复杂的查询不是它所建议的,它的优势在于通过key快速定位数据,它定位数据的速度与数据多少没有直接关系,无论是1万还是1亿数据,它定位的时间复杂度都是O(1),而在实际使用中,可能不简单使用key定位数据就够了,可能还需要数据里的某个属性去定位数据,这种情况第一感觉不能用redis,或者说,不能用k/v存储系统了,但这不是我们应该说的,我们要的是解决方案,换个角度去思考,我们是否可以把那个属性拿出来当新的key,把原来的key当作它的value呢,答案是肯定的,这就是用空间到换时间,只需要两个查询就可以搞定了!

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAiYAAAEECAIAAACTIGixAAAgAElEQVR4nO1dPY40SRGty3ACLoCDsBYJAwMHF+FxBA7APfA5BUhrLGglcBBCwgMJY3cbZ2cLo6G+nIyffBmVlRXZ855KPdXZkREvXmZk9Mz0N9+2E0Q/3r756m+/+PE/f/r9f//oe//41c/+85c/7d+97d+9/ecvf/rHr3727x99758//f7ffvHjt2++OqZ8/vnnNxImCCIDtrsJEGvi7e3rL/7w15//8O+//Mnjz3/87ttvn8Pfffvt489//Psvf/LXn//w6y/+sL+9HTPYcgiCYMshonh7e/v6q7dvvt6/e3s3/t3b2zdfv339VdlvdrYcgiDYcohpYMshCIIth5gEthyCINhyiElgyyEIgi2HmAS2HIIg2HKISficIIgPD7YcYhL+9a9/3U2BIIibwZZDEARBTAJbDkEQBDEJbDkEQRDEJLDlEARBEJPAlkMQBEFMAlsOQRAEMQlsOQRBEMQksOUQBEEQk8CWQxAEQUwCWw5BEAQxCWw5BEEQxCSw5RAEQRCTwJZDEARBTMJtLefXBEEQd+OuA/DD4s6W8wOCIIj78OUXv7/rAPywuLnl3BWdIAiCLWc+2HIIgvigYMuZD7YcgiA+KNhy5oMthyCIDwq2nPn4X8vZ/o/f/OY3W4HjpXdzNMiJPsqWI8MhHhqJuX7O+ycIYnWEW4561k04Vayj2B8ca9ZLuEb1mn+vvuQYO6i+y+laOTDEkL510gNBEGkRazmT20wZywpdnsDV4FizAOff/e5327Z99tlnUMvZtu23v/2t31TYcgiCWBHnW85kLNdyjrmfffbZ/+7LUaTl7KKv+N8eWUTl73Jk5tLJ9h6OpXTls6rcOoEIgngNnPnBWvXUOZGapyJ+yFjn23a6l4BmMWxOy5Enr2w5+3vh1Im7fbg/gbQc5N551dFIpgMGIgjiZXDm4wPqqag+bZ7gH7rlVPeykVSO1DaDkBjeclQyVnTLQ9OMIIiXwflPrDUPZdla/PfisXAv0nKavSRVy5EhulqOOs6WQxAvjPkt56Jwr9xy8M7kN3P13+U4Jz7echC9woEIgngZjP3EmnMuNd9Pg0fN67Scoz1U/7xGHVFh/YOeMy3HcSIHK0vJUB2Xg81ABEG8BsItp/dUkYPSIR7XGZlg1otKhNsOU/71AYIg7gX/+sB8sOUQBPFBwZYzH2w5BEF8ULDlzMedLefLL37PixcvXjdedx2AHxb8xThBEAQxCWw5BEEQxCSw5RAEQRCTwJZDEARBTAJbDkEQBDEJbDkEQRDEJLDlEARBEJPAlkMQBEFMAlsOQRAEMQlsOQRBEMQksOUQBEEQk8CWQxAEQUzC/1rOrwmCIAjiYnxqOT8gCIIgiCvxruXc842Wizys8jAhCIJYFHXLuf2/ryivPKzyMOHFixevdS+2nMWY8OLFi9e6F1vOYkx48eLFa92LLWcxJrx48eK17sWWsxgTXrx48Vr3WqzlbNu2bVsGJn0q/x+3S8qLFy9eN16LtZwvv/j9ii3nRua8ePHilediy4kz6daaLYcXL14f+/JazvGzoOqHQtWPiUozaXzmclqO/FGVysoyPs/E8W+Fk2zl/RC2vHjx4pXzanyXI8++6nAsb8rHIZf/XY7KBDEYzgQMiis5hDMvXrx4ZbvaLccZubHlyOO7hG88lokqlPqdCthy1ER48eLF6wWuJVtO8zSvxi9qOZZ/9VsW/6k1hRcvXrxe6RrTcr68oN98efoHa1YKo5ioWfMHa7x48eJlXe2PD6jfUljfZ1zdcsrQ8mdo6g+jLm05qn/5wzHrx2XqOH+qxosXr1e91vuQdF96V352jhcvXrx4dV0v23LGfq+QUx9evHjxWut62Zbzqkx48eLFa92LLWcxJrx48eK17lW3nF8nQx5WeZgQBEEsincthyAIgiCuQ/1dDkEQBEFcBLacIJ4fhzvuj8d7kYeJRGZuEiDbtZLaXzcvibEpvIAgIK7eIXrLyans8bnn8r48+ktLdZY/2EumvLEing+0i2StxLs2wWQxK25jJbpC8P3KqtttntV4c7kdh+oIQtharPPLFJ5bOrEgY4ER1xVkyZ3//FK2nPO8r0C53rubbVWxlgd5P5DPkBBWRBndYeK7miamDDRWIotn2Bvi50zhlR7k02YuVZH62wBf7qYHZPpAOOnL+3AtLC1Inp2PNvjnl+Tf5ahCO5bqq/hgjJL16qUtJ+A/iZiZW840NEVwBpHj2HHShTwnrBw/zy0wK48geXY+2uCfd0u0nErcA5XZLvirb2SQdzdNSsirTc4yL5VerMwsP7eL6aSjaiJtqpvqUc7d3kPyb6aA2+Bxq3s100oNOdeiF1gXKyl5L1dhN5S0VtAyk0D47Jom0r+fHYg8ghwRJRP5FAmqJosIi2T66S5/yylJ7/aSVzeVE3AQ4YMbIIR3beM2fSJkrE2Ac7tITFAQJ2uk8BwDfxUszvjSI0paGSGCWEz8KDH4B4oayKHRVQsWHzCowxac5bjKIIizseXEppmTrGPgc6uZPL/kbznqfTnSVHDUbkMmWquubtBq744tM9xPOTJBTCcd+VSWt1RSJV96sMysEGfgl586iGiOrDsYugtgLPyEBbf91bUQnpVHEGvnq96qx7HbXuWm5PX8slzLUdfSV7BrT3dRQggjL/meR5VZEjHxamxO3wVty49an1fsdicja9ChXd43jwkwdBd6V8GncX5HjaqF8Kw8gqg737pR9/8ooHv++eU1Wo4cAcv4JKUw4eag77NJYxdHMM4twLY8E31WXd78KdJD05vTcprL2pWac+OHRrj5c8GkAovljA+vyqtrQfW2liBy5zsTrZYzdturI5+YPL/ID0mHz+KLIFlZPKtx1ex8juD+ljR8JqrZZgPh2ZRIHfHpNW2axHwaPrfKTBJQLUv7iieoJ26j0lMjNmmAg8jIyYycTJGgTTNnUA2qathMxM9uLUEkecmktNmKDelzsyL2WiqCPL/wrw/0Al+GDwgqsxCmLdYqu4KCXAq2HGIk2IkXwpzFAt9KZwAFmQC2HIIgCGIS2HIIgiCISWDLIQiCICbhXct5EARBEMRlYMsJ4vkLwOP+eLwXeZggWIvtAya8XF4SzDSDt8wI7xCl5RwfqLiMbQSSlcWzGlfNLBs8cafflH6GiLnZkJSQWBnEvFq3K1bhEaox3D+yBLhleLFimYLr3sTJZVLJWMS6FmtdQUoO5/k8ztVC3XKqnX2G1kBIVhZPp2yqlyyzXkq6rBfIOCqXJGJO0E0eoye9IX7CO6qcrj6dtljhTO86PaxYA3csckxnFiRPLazRckqAFSVHLmo5zVcvbTkn/ScR0w9xxtvAMpsDh2e2xbIYWpSuQ1fLcexjUcApr9Rywti2zftdTrYqtd5oyPd3To1VlqVn5I2M6s1/1Y9SjRz3kkysfhzR8ojpuLUcIrqVxKQ36dzx7xAGbfC4eJR7F8vhI0NIejIouAqbDYTPwxC58u9nByKPIFux7lZQZ66liaTRtrFaTkDfOZByl/elfA9tmcunlbHqH+HgG1RMKlbqYHPH44T9fZBBTIeA5Q3UTZaZ461pZhHGN0MzFz9ctsVSGarHk+TgBMXlsjRsBoqtaUCfPIIkqYXHw/jE2vnNdx0cCfyTCCwzMPem+g6T8iW5KcfWj48kYoJBy5cQ3ZzKkROrR+uwCEP106VYtsXyGTrjIA28OuaUTGBWHkHy1IL+ibXzfq9D84hpvirNAtvRN+s9HRDPY+unmnuvmEjQgG7y8FWZq2XWRRtBL2fHOMliOQz98QBbP8THaTlgiMy14H18IA/8UkHM/M03oeWoIZqDvk+ErXxvcouYkobFFvTmD1rRnYlWmTUXuisvPB3rpVt2fmD5nPFwg0QGm4ECJaN6W0uQRLUgW06J5vxpqChZPC0z35tj6fAJE+4122wgPJvpTxAT13aUbvKpmuxhczyWN03OuI1DuIroi9lrZpFxRk6m6aSPBG2aOYNqUEsxPxE/u7UEkeQlk9JmKzakz82K6Jnxrw/EAOpLHKBcS2Pa8q2yTyhIDGw5xOVge14ac5YP/y7kdlCQM2DLIQiCICaBLYcgCIKYBLYcgiAIYhL4X7QRBEEQk8CWE8TzN3vH/fF4L/IwQbAW2x0mvFxeEsw0g7fMCO8QpeUcn5S4hOkJVJQkz+oD5s2JMk08a6fflJ6HiLnZkJTAWLeLebVuV6zCHqox3L9FcvJixTJ1nHfh5DKpZPyswYjrCpKqFuqW4+zXe+HUUrnGzYmOfddKVE6aBXwezZTx+skg5gTdSg5DvCF+uk4xa3o1MnmxwpnedXpYsa4rGSdcTkHy1ELdcuSEPIgVHjjee1Ig5yliiWPsVk4lZpNVDGPLbA6s5uHf37JYOM+r0dVyHPtYFHDKK7WcMD6RqFoO0tLnAym8A9ZEdTywGIGWo9KrRo57Pwt8K1tLmUrMABNEt/Iwld6kc8e/Qxi0weOCsqhJzVwskKe1NCpbZBU2GwifvZWstaYBifIIckSUTORTJKiaLGTzvFv3u5xKMt8Y8dbLBKTaDKdm1CTcJNPl7RYxfT9ndJNl5nhrmlmE8c2AqLTQYqme1eNJHmEOQ1yuJvnrSgZEHkGS1MK+L/uDtf39mwXf2DfANXXIINGtnVdtyrH1gzDc7xbTDxTWzakcObF6tA6LMJrC4mZJFqvJ0xr341brjlTHLSVzZsp8QfLUwsItR4537TBVdzxl39KJ3kUMmTi2fm4REwkU0K2qVTlY3lg1OQq9nJuD+92LFeCJMOw9TMG415VMYMp8QfLUQt1yzi/MdVC5Ibvq/N7ttZTRcfJd9dMkbJ0mk8UED7WxuskycyZaZdZc6K68umRXB2/Z+YHlc8YDJ2zCkllLkES18PyS/9/lVKwsknLcsWzO9fnECMvd1jTbbCA8m5lOELNL2CG6yafSsrQ5HsubJmfcxiFcRax8+nlZZr5lc+6ZNJ30kYhNM2dQDWoJ6yfiZ7eWIJK8ZFLabMWG9LlZET2z5xf+9YFegPoSByjX0pi2fKvsEwoSA1sOcTnYnpfGnOXDvwu5HRTkDNhyCIIgiElgyyEIgiAmgS2HIAiCmIR3Lefu/7yHIAiCeGWw5QTx/M3ecX883os8TCQyc5MA2a6V1ON185IYm8ILCALi6h1itpyc4pasjk90VAbIoGoWYyKlL52fD1Q6kZCU8Fgzxay4jZXoCsEfV1bdw+UZFrwaVycihK3FOr9M4bmlEwsyFhhxXUGW3PlqyzlP/QpU5VSOI4O+WYBMeaPu+JMhrIgyusPE8TZTTMltrERWOmFviJ8zhVd6qEZ8lZoaOmbhvK7YzwisWANrATnrMguSZ+ejJ49sOecL6QpUrEbtufMtp/nqpS0n5j+DmJlbzjSoRRtoOfhuPM8zbctx7GNRwCmv1HLOAG3wVctJwr4C+Obaqk/1jQzy7gah1Hy1pHegolHZqPRiZeb4uVdMJx1VE2lT3VSPcu72HpJ/MwXcBo8r7/2FdqZYefmEEVhBZVxQXt9MAuFT3atZqAYBifIIshW7wgrqzLU0kTSaBkim2/YBWo6fUSxNZJEkE4Tww15g1bhJRt0EIA2ZwkAx8aDWFKTwHAM/fYszvvS+zk5of6Gbe8aPEoN/oDhsVRpdtWDxAYM6bMFZjqsMgjgbW05smjnJOgY+t5pJ2XJwEjMRWw9Q1nCazUVS6akbtNq7Y8sMJIYMjhXTSUc+leUtlVR5lh4sMyvEGfjlJweRxW0eKF2hu4DsSZwGvu0vrYUzs/IIYu181Vv1OHbbq9yUvOR3OWNrbwj89XAGm9sxnKY/0YkbpjSqzJKIiVdjc3pl76Sj1ucVW93JyBpUSw9cBVDMMHpXwaeBb56rayE8K48g6s63btT9Pwronl/0Q9JnTsnze7Q58QyTrjJr8q+OMNXhWDGdiGr0QNCHSNwvvMqb03Kay9qVmnPjhBvScsCkAovljAdO2Ay1UHlbSxC5852JVssZu+3VkU9MnA9Jh4/ji1CxUknKQdAsQCbG1meimm02EJ6q2XVi4sL6meJmkoBqWdpXPEE9cRuVnhoRT9YZwc3OZORkigQNpCAZbjb8LKQrNehagkjykklpsxUb0udmRey1VAThXx+IAV+GDwgqsxCmLdYqu4KCXAq2HGIk2IkXwpzFAt9KZwAFmQC2HIIgCGIS2HIIgiCISWDLIQiCICaB/0UbQRAEMQlsOUE8fwF43B+P9yIPEwRrsd1hwsvlJcFMM3jLjPAOqVtO9VHuq/j2Q1KySFbjqhnuzeFT3liuhii52ZCUkFgZxLxatytWYQ/VGO4fWQLcMrxYsUy39wAy9tyexGZDxgIjritIyeE8n/1cLSgt5wyVi+DXg3rvmOHeEEq6rP0O8YgyusME8XOLmBN0K0triDfET9cpZk1Xn05brHCmV2x7BFasUSWzv99LPo2cguSphZdqOarQvpk/BaSEED6PUVs5oZh+iDDGltkcxFrOLYslkeeElePnuQVm5REkSS18IqH+YO0uWhK9785U8s3C68o60HJUbauR416SidUP4ud2MR1u+wndyuykN+nc8e8QBm3wuL4geRbLCbQLwXexNDIouAqbDYTPLkSWs3wZceQRZCs2jxXUmWtpImm0bZ536nc5AYkvgrpazqu7IN+0Vy2bfBADnzDIyjJuklE3aPXSvWL6ns/oJsvM8dY0swjjm6GZi/M04WJJFOeVcib6lFSSgUHVVTOowxac5bjKIEiSWth39xNr57fgQFQlh6u/Gwsg/VjGFh/wVf9MlJtybP1YrlKJ6QcK6+bkKCdWj9L/Sah+EMXSLpYEsnURhiVVpDomlExsVh5B8tRC3XLOL8zV6C08P4tw4eFuu7aX43ls/ZRzbxdTtT+vW1WrcrC8sWpyFHo5W8Z5FgvxqY7jJywY4uO0HDBE5lpYo+U4GvmD/nr43kBKzVdHnRSBY2V/v8OsuRPEBN8ijdVNRncmWmXWXOiuvPB0LJtbdn5g+ZzxwAl7b8mo3tYSJFEtPL+UP1jb/o/m5GlQKSGD23v0evMpdXGWNHCzzQbCM6Bbk1uvmLi2o3STT9UsDpvjsbxpcsZtmmL6Zk7uTUEC3s6k6aSPBG2aOYNqUFWKZiJ+dmsJIslLJqXNVmxIn5sV0TN7fuFfH+gFqC9xgHItjWnLt8o+oSAxsOUQl4PteWnMWT78u5DbQUHOgC2HIAiCmAS2HIIgCGIS2HIIgiCISXjXcu7+z3sIgiCIVwZbThDP3+wd98fjvcjDBMFabB8w4eXykmCmGbxlRniH6C3n+LDENWwjqChVnyW3zI5B35s10edT3liuhii52ZCUkFgZxLxatytW4RGqMdy/SnL+YsUytYj14uQyqWQsYl2Lta4gJYfzfB7nakFpOaVkZ2gNhFMP8qXq3q9DKUrv/tNl7XeIR5TRHSaIn1vEnKBbyXaIN8RP1ylmTVefTluscKZXbHsEVqxRJfPQxLTC5RQkTy3ULSdPmynhrByywF3nWm/L6SUcxqitnFBM0FsvxpbZHODy3r5YEnlOWDl+nltgVh5BktTCtm16y0Fa+mRYfTVQeM50POtAy9kKVEErG5VMrH7UpLKJ6QcK61amKb1J545/hzBog8dVNUm4WE2flXM1/Wo6sgqbDYTPw5XlYasRkCiPIFuxi6ygzlxLE0mjbSNbTsnAnz8TltbqU1Vu1Sc42GtjLbbkqQ42iSHZOd5SiWnZn9dNlpnjrWlmEcY3QzMXNVzaxVI9WGzx3YvL1TypBpZMc5bjKoMgSWrh8XB/sHZ+C45C1/KASnVVY68ZfibKTTm2fs74mSamzyesm1M5cmL1aB0WYYC6yUyb98fI5MUKe24mctyA1XF1yYRn5REkTy28WssBzcCJIKWu6ENOhDPLlFBMJFBAt6pW5WB5Y9XkKFzdckCzgYuFewifsGCIj9NywBCZa+GlWo61Nv5T3ydCCSGshmgONkk22cr3JreICb5FGqubjO5MtMqsudBdeeHp+C9N3vmB5QNpgCfsvSWjeltLkES1oH5IGpw8Eyor+VS1qQa393Dm+ny6CMuIuNlmA+EpzeaLiWs7Sjf5VCV82ByP5U2TM27jEK4iqtLJ9B01rEGfyag0nfSbxlVqYF6S4WbDz0K6UoOuJYgkL5mUNluxIX1uVkTPjH99IAZQX+IA5Voa05ZvlX1CQWJgyyEuB9vz0pizfPh3IbeDgpwBWw5BEAQxCWw5BEEQxCSw5RAEQRCTwP+ijSAIgpgEtpwgnr/ZO+6Px3uRh4lEZm4SINu1ktpfNy+JsSm8gCAgrt4hdcupPqPdzfcySEoqSYu5OvFMjk6/KT0PUXKzISkhseaLWXEbK9EVgu9XVt3eIzi4WCWl3ViXWF7gEjdxclFUMhaxrqVZV5Ald/7zS9lySqdJUNWbOmIN7u+/I9nHbX2Lj8NkSEQZ3WGC+JkgphMId+L7H7h1JxRe6cG5BxfreOqLEM7riv2MwIo1qhZ2sZ+dcDkFybPz0aPg+UX+YG3FlqNOAe3PUPJfvbTlBPwnETNzy5mGQMvxp18kQp4TVo6f5xaYlUeQPDsfbfDPu+Qtp4Rz/B3jcg3k+3Tk3Q1Co/lqyUHGrUaOe0kvVmZ+mjeK6aSjaiJtqhs1i3Lu9h4yzWYKuA0e13JS3auEpb0UrXddQD67tgq7oaS1gpaZBMJnt/WsCDveQOQRZCu2hxXUmWtpImk0DZBMP91VLSewBnOA6yXXwHJykgbC0wpqDar+Yyk0JSrNZooJCuLEQgrPMWimo3LGl9658cP5RRuIdb6c/QNFDeQk21ULFh8wqMMWnOW4yiCIs7HlxKaZk6xj4HOrmTy/LNFyuvaZs/aWzzAZ/9Vy1a3TpHxpbJl1MbS8XSGmQ0A+leUtlawepQfLzApxBn754WbImYUsX5uxC3DF8RMW3Pbza+HklPmCWDtf9VY9jt32Kjclr+eX/C2nay13TVZ8boCP82qMOe7zfMHcIiZejc3plb3qWS25AG0QTkbOoD8LPLOQib3oXYUmWzDEhFqIzcojiLrzrRt1/48CuuefX5K3HLAUAwf9tJaDE+4qsyb/6ghWp4wVU0a0iCFBwYXzC6/y5rSc5rJ2pebcgKFxQZxADufAYjnjZ7jdUguqt7UEkTvfmWi1nLHbXh35xOT5JX/LKVENqpb+oGrWSwnkLFPoNdtsIDytiBeJiQvrZ4qbSQJWsltRbM30LcJgUpKeGtE389P39USS6srIybRpvBvr0gxk+Zfws5Cu1KBrCSLJSyalzVbsNJ+bFbHXUhHk+YV/faAX+DJ8QFCZhTBtsVbZFRTkUrDlECPBTrwQ5iwW+FY6AyjIBLDlEARBEJPAlkMQBEFMAlsOQRAEMQnvWs7d/3kPQRAE8cpgywni+QvA4/54vBd5mCBYi+0DJrxcXhLMNIO3zAjvEKXlHB+ouIxtBBWr6iPnJ83UkSaf8sZyNUTMzYakhMTKIObVul2xCo9QjeH+VZLzFyuWqRWxFyeXSSVjEetarHUFKTmc5/M4Vwt1y5E7LwPAehhi1rv/dFkvkFH1GT4pmlOuFnOCbmVpDfGG+Ok6xazp6tNpixXO9K7Tw4o1qmQe7/eSTyOnIHlq4aVajpwyoeWAhM9j1FZOKKbj7QzGltkcxFqOnDJhsRD/c9DVchz7WBRwyiu1nDC2bdN/sHYvLRUVq62AtPTNzryzU534rzbJSMJVFo5PhIkqUZOYnH6dmE1vMd1KGtKbdO74dwiDNnhcVZOEiyXhLJ9FT/JvrsJmA+HzaCVrrWlAojyClKtsBXXmWppIGm2bdX+XU76k2ltmcu2l/yYZ3ABhYrHyfSJkVG+pxJSB8KAWAemh6a1pZhHGN0MzFzVc2sVSQ6veqhE/BVwuS8NmoNiaxvZzEkGS1MLjsewP1qxXQbNDnV5ZQTNrOdWd55wpTZ84YXDuLWL63MK6OazkxOrROizCCAgraZ/3OXCxkNDqOJgUXh1Xl0x4Vh5B8tTCqi2nyXOsmU8JIYy85HseVT8JxXS4IS9Zg1WtykFJW6YwCoH28Mi9WJbP5jh+woIhPk7LAUNkroWXajm9Zs7ELkoDCTueu4xLy9gpNlZMScNiG+P20KSQ0Z2JVpk1F7orLzwd66Vbdn5g+ZzxwAl7b8mo3tYSJFEtLPq7HHUENAMnNvl0Ed4K9JptNhCe0my+mLi2o3STT6VlaXM8ljdNzriNQ7iKqErnj4Bm4MSTaTrpI0FjhC3/En4W0pUadC1BJHnJpLTZig3pc7Miemb86wMxgPoSByjX0pi2fKvsEwoSA1sOcTnYnpfGnOXDvwu5HRTkDNhyCIIgiElgyyEIgiAmgS2HIAiCmAT+F20EQRDEJLDlBPH8zd5xfzzeizxMEKzFdocJL5eXBDPN4C0zwjtEaTnHJyUuYRpC9cnxalC1rAYth47/JqXy5p2mhZ8hYm42JCVkE2QQ82rdrliFPVRjuH9nCWYuVixTcN2bOLlMKhmLWNdirStIyeE8n/1cLdQtp3x5yNoPQVUMu8HTGnTqsGvPOZSaIc4DTBncB74TZ3CUmBN0k8foSW+In/COKqfLpzMXK5zpXaeHFWtUyeyamFa4nILkqYU1Ws6BQOHtMuehLaf56qUt54z/PGIigWLeBpbZHDRPzzyL5ZAc7hmPa42f53bylHillhPGJxLLtZxdq5kzhXcgwAThaUWpRo57SSZWP05SecT0A4V1K5OS3qRzx79DGLTB41pOqvvbFwshudtLI4OCq7DZQPjstsgVYccbiDyCbMWesYI6cy1NJI22zfNOthxk/mQg69G83421t4wRJr6BE8LfkU2fCBnE236rmBar87rJMnO8Nc0swvhmaOZihcu5WCpP9XgC2UqSgUHVVTOowxac5bjKIEiSWth3++MDzQDz0VykrlW0cgSzbqqv0gsfrLgAAAkjSURBVLPOjvKlsfXTxXC/Scwmk5huTuXIidWjdViEofoBFcu5WD5PZ7zJsKSKVMf8kjk5Zb4geWpBaTkO73sxsPCqlwLb0TdzHDZjza+f28VEAgV0q2pVDkra1nF8Hr2crcE8i+XzdMbxExYM8XFaDhgicy3ULcdP716MKjxHcWmMkEGo4oS76qfJ1npvMllM8C3SWN1kdGeiVWbNhe7Kq0tqdfCWnR9YPmc8cMImLJm1BElUC88vZcsBZ86HXCdJVQ4iI9YgTkY1KB1uBXrNNhsIT9Vsspi4tqN0k0+lZWlzPJY3Tc64jUO4iqgm6+RuDSIjYKZdaTrpI0FjhC3/En4W0pUadC1BJHnJpLTZig3pc7MiembPL/zrA70A9SUOUK6lMW35VtknFCQGthzicrA9L405y4d/F3I7KMgZsOUQBEEQk8CWQxAEQUwCWw5BEAQxCe9azt3/eQ9BEATxymDLCeL5m73j/ni8F3mYIFiL7QMmvFxeEsw0g7fMCO8QveVUjo7PToyk3AnJwRmRbJtmvTk6/aZ0NUS6zYakhMTKIObVul2xCg9AXnwV5ESV5PzFimXqcOjCyWVSyfjigBHXFaTkcJ7P41wtKC1H3X/yfib8eijX2Jru2wdyrOb6dY44xCPK6A4TxM8tYk7QraQ6xBvip+sUs6arT6ctVjjTu84KJ315HyiZh1DSCZdTkDy10P4uJ0PLKaGqab30cNUZ0nKar17ack76TyKmap+t5cxBs0mrI7csls8wbctx7GNRwCmv1HLC2LZtpZYj32jIN3EHjpHqppoODvaaWW+vKnrlYJWRmmzzXmVipZlHTNX+vG7HiOpNOnf8O4RBGzwuEiXDYvkemktjJdVchc0GwufRytRa04A+eQQ5Ikom8ikSVE0Wslmo5VgcSsmqQfUla8QaDJg5THzCD2zHn68fa+58Ma0p53WTZeZ4a5pZhPHN0MzFD5dtsVQn6vGkHn9Nel1Lb/EBgzpswVmOqwyCJKmFx+O1frBWDYIL6fvBaViv+mei3JRj68dHEjHVWed1cypHTqwercMiDEtYxKzLeNpiqaGRcfyEBatjTskEZuURJE8tvFTLkVQdsZxVj9GwXu3aXo7nKxYliZjqxPO6VbUqB8sbqyZHoZdzl/Eti4UwbEYEk/JDzCmZwKw8guSphTVajlpR8lXwwGoa91IaS7irfprM5aFzi5jq2aeahbkhZeZMtMqsudBdeZ2R+sadH1g+Zzxwwt5bMqq3tQRJVAvWh6SlvuDuvAggq65BaYCnCW7caqWb3FSzzQbCU5rNF7NL2CG6yacqvcPmeCxvmpxxG4dwFbHyiYz0DvrcTqbppN80tughSTl5ITlartSgawkiyUsmpc1WbEifmxXRM+NfH4gB1Jc4QLmWxrTlW2WfUJAY2HKIy8H2vDTmLB/+XcjtoCBnwJZDEARBTAJbDkEQBDEJbDkEQRDEJPC/aCMIgiAmgS0niOdv9o774/Fe5GGCYC22O0x4ubwkmGkGb5kR3iF6y5GObhfx+PyGM+JYNm0sS4dPeWMRswJ1YbMhKSGxMoh5tW5XrMIOyIuvgpyIL8GlixXL1NmZXTi5TCoZi1jXYq0rSKpaUFqOujBD9kEYfj2o99XC+94sS4SSLqtb9jH4aVpMED+3iDlBt5LDEG+In65TzJquPp22WOFMr9j2CKxYo0pmxw6HzILkqQWl5ai+lmg5yM6zXuo9KZDzFLHEMWorJxTT4XYGY8tsDmIt55bF8sOlbTmOfSwKOOWVWk4Yn0gkbzklHG5H8Th1Ww6qbwzDNKxXq3ed8h1lxQTJAt/K/ruzJGKqzs/rVh6m0pt07vh3CIM2eFzHjzVyy2L5DJtLo7JFVmGzgfDZW8laaxqQKI8gR0TJRD5FgqrJQjbPu1VaTnNXlfI5s6qX1FldNHxWFh9/RzZ9ImScfZBETIeAFRrUTZaZ461pZhHGN0MzFydcwsVSfarHkzzCHIa4XE3yY0smtp+TCJKkFvZ9kR+sWRyccsULD9fUJ9NkYu28alOOrR+EoToyU0w/UFg3p3LkxOrROizCUP2AhZZzsVSfyLgft1p3pDruKpnwlPmC5KmFZVoOQilWeLv9ZqSLD8IEITahfrKJiQQK6FbVqhysaFePY9HLOTwybbEsn81x/IQFQ0womdisPILkqYU1Wg7IB9xh4Eu9lPwQatDmYJN2k7A8TW4REzzUxuomy8yZaJVZc6G78sLTaSZlDV6x8wPL54wHTth7S0b1tpYgiWrh+UV+SFrqi7i7CNt7qCMWVZU8PuhQAjnLFHrNNhsITyviTDG7hB2im3yqpl+KUPJUg1pswYwswpu9CqCZSlhNAR8Mp+mkj0Q8k4Ia1FLMT8TPbi1BJHnJpLTZip3mc7MiembPL/zrA70A9SUOUK6lMW35VtknFCQGthzicrA9L405y4d/F3I7KMgZsOUQBEEQk8CWQxAEQUwCWw5BEAQxCe9azt3/eQ9BEATxymDLCeL5m73j/ni8F3mYIFiL7QMmvFxeEsw0g7fMCO8QveVUjo7PToyk3AnJQWU11sznU95YroZIt9mQlJBYGcS8WrcrVuEByIuvgpyokpy/WLFMt/cAMvbcnsRmQ8YCI64rSMnhPJ/HuVpQWo66/+T9TPj1UK7xQDOQki7rBaIFcgH93CLmBN3KnTzEG+Kn6xSzpqtPpy1WONO7zgor1qiSeYhT0QmXU5A8tdD+Lidny1FfvaXlBAjHMGpREooJcuvF2DKbg64efO9iSeQ5YeX4eW6BWXkESVIL27ZBP1hrjk+A9aYYp+oUnuW/yQd5tQxxoEqhsnloqcXqR5Uom5hqoPO6lTSkN+nc8e8QBm3wuKomCRfLD91cGpkCuAqbDYTPo5WspW1AojyClKtsBXXmWppIGm0bvOUEFB8IJ21/q8kRZx+AOSLKVvdWUIsJ4hMho3pLJabv+Yxusswcb00zizC+GZq5qOHSLpbKR/VWjfjy4nJZGjYDxdY0tp+TCJKkFh4P7OMDzWBXA1ySgEGvrKAZfibKTTm2fnA/6sgcMX1uYd2cypETq0frsAgDPMWa8oLGoLcziyWBbN1m0Grdkeq4umTCs/IIkqcW/guriou5v5UFaAAAAABJRU5ErkJggg==" alt="" />

上面是一个100万的hash集合,key是用户id,value是一个用户实体,我们通过RedisClient.RedisManager.Instance.GetDatabase().HashGet("VoteList", id)很方便的可以拿到对应的用户实体!

我希望通过用户名拿到用户实体?

这种需求,我们不要直接解决,如果直接解决,那唯一的办法就是遍历所有数据,然后一一对比,时间复杂度就是O(N),太可怕了!

通过添加新的k/v,解决这个问题,这类似于关系数据库里的全表扫描+索引技术!

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAgsAAAEXCAIAAACswZDkAAAT7klEQVR4nO3dQZarOLIAUJZWS+sF9D5qKzX4gxrUMnqcU//Be+XEKBQSgjQi896j04eUhZCpEIGwX3t5wPfyf8BJlqunM5zsf//739VDgG9ChgAgJkMAEJMhAIjJEADEZAgAYjIEADEZAoCYDAFATIYAICZDABCTIQCIyRAAxGQIAGJvzRD/AbjaOy96d/fuDPEHwHX++fuvd1707u6CDPHOIwKsyRC7yBDADyJD7CJDAD+IDLGLDAH8IDLELsuyLP/973+Xld+1y7JtVyh3zK0zRHm4nh7ab6bez/H+wwN9xeDP6hPYGM4Q4bXuDZO0dinOK89q9vnaul3Yy2bnWuPEZg2x60R3HuKUK/XeZmdFyeasntInsDaWId6cFdbHqh06vFY8L+tnNQsu9Muy/Pnnn3kOkCFkCLij4xnizW6QIR5FGqhliM3yYqP8HKIcaNnJ8ippWXaVj2rTbXKgsM/adjiq2gncvNPwnBw5IcDakadMmz+TCRhO2LLl3uOG22Xlic22HpUMsXmf4Y61c/HUkyF6tpNXk5Nevp3OAzV7S/4b5AcKh7Q5J0mfPS2BtSOfVNfmbPnnwPRPDppvf3mG2Iy4vO5vhhtmhZ63enqGCAdTO3qth2azZm/N6354SmuHLs/JupOkZe1AwNPx7zLls7hscHBWNi+JY5f+zmbbC33z0t/ZLPR1a4i8Mn+pvBbXeqg1y8fWedzH63+k/D9eLUP0jBx+svdniC863EQZoj+RbF7aCP89RHKBHrgKJ7sMHyjUf/SBd7Q5pbU+kwwhW0Do3O8y5bM43/Hgzej7MsTmnzWENaHaP6Q4kiGSTsrKTctyhGF9Wdk8UKjcvdZnT8vyz7DxutmyOuf5qQN+Gc4Qe68q+aw8fpF5T7O3Xkr8m2rgWv5N9S4yREN48w7clAyxiwwB/CAyxC7vzhD//P2XoijKheWdF72788wEgJgMAUBMhgAgJkMAEJMhAIjJEADEZAgAYjIEADEZAoCYDAFATIYAICZDABBb/gMAkeUPAIjM+JTpD78hwY8h2pnZ8ng8Lv+/a1+X//z7K0OXj0RRvrqIdmXyIkMoymVFtCuTFxlCUS4rol2ZvMgQinJZEe3K5EWGUJTLimhXJi83yBDLsizLcvnAFOX0cjBDLP+6/I0o37XcIEP88/df5oDyLcspawizQ/m6IkMoymVFhlAmL9sM8Vy0blavm/XsulnZ+EhJMkS5pg5HVWusKLOV2jPVMIZrIV3OiHI72V1RkhKsIcow2sTZemP9v6eUfA0RjqSngaJMWJor5p7A7p+tYXtFSUqcIZKaCzNEORPW8saKMmHpzxDPP/MbuNrutcmiKHm5TYZoToxNvWmgzF9qn0PUbok2G80/a7soSmcZzxD/fM21+OBTptpbUJQJS3+G8JRJuaTEn1SHN+y1u/ivzhDrQ5cPlMJVszmg3KIk32UKo3ozPWvPjsJ6j5iUgXKPb7vue0vmgHKT4t9UK5OXb5Uh3CUp9yoyhDJ5+VYZQlHuVUS7MnmRIRTlsiLalcnL8ng8vvaXsPf7NWeuHgW8g2hnZsvAb1sD8BMsp/3iNQDfiwwBQOwzQyzLLbPF8xuuZX3YbN14777h0Y++AfjXOpzCiH1UojGM4Z7YhtzLtfLaoRwRXtPDBuVGuZ28lB8FhtUCrxmNecJIYhuabr+G+KX/Xqk58ZKXyu1bnzRm01yn9t+7lNsilgHzZohylV1bdz++MkM8oqkVdgIHnZUhHkXQiljGTJ0hmhtl46TmUb/KNzNEzxMAOKgZxrWgDXdctxGxjJk3Q/wycOnvb7ZendSa5U+W5jxp3FTnrU8zDjcviViGzR46X5ohavXNtXztYRcc0f+w9LEnQzxELKOmzhD9D5oOPmXqadZ/FBiz6ylTT7NmS8htb4qvHc3a8iqsaVaWfZb914470BKGheFU/hm2OVIJCbECQEyGACAmQwAQkyEAiMkQAMSWDwCIyBAAxH5niOcXpa8dzYBw5J2VSU1ZH3Z105PGhHris6xMQrEnsCG3fBSRdN1gxtXewnoibSqbzdav1ubeTU8XsxmIz7LZpsP+CIcaGaLarNZ/Tz3scnqGqL0kYtllGy7zBFC5Lu5cUIf1yXyrLcZ39Q9nSTJE+Wry7EiG4Liu6+Alyot7cqffnAybGbXebq4/evqHU4TRHt7EbJp9FAHZOU0gMfvzpeE7o7Bmff+1KwHIELxBeYkvVwy1xuHueQNomv3zq7EMkb+dJENYQ3CVJJyS+LSG4Es1Puy6Vv+Dpv6rec8nE3v7hIOSq3nnBxJlJzIExzU+Ab5QOapwnHubhYfIK2tnZp5zxd0lYVxrmdQklV/2DvieRAwAMRkCgJgMAUBMhgAgJkMAEPMLQgDEZAgAYr8zxPPb09eOZkA58s1Xy5OWz/rODvMdYVgYtMmsbMZnrfILxs53tjyKaLtuMOOab6HWoEwGm+3OHeGI/P4jvPonzWqVIpa9vsl98ViGaOaAvOebnism1J8hNmHZnyHCo0Bu3pvict0drsSfjcMdaw0e3dNJhuANyqDNL/0yBO8x7xqic1aUNZ1zZm+GyNMSHNF5a7I3QyT3SdBj3gzxS54M8spHfSL13GSV00yG4A1qGWLvcqG5CIamb5gh+tcQPQ+jkkPPdq64r/580PMwKu8Z+k19l9H/oGkgQ3Tu2/loC47ozBBlTefDqFo/kNvem1w7mrXlVVjTrAw7zCt7ukrqYUwzFGv1nTuKWAYIFwBiMgQAMRkCgJgMAUBMhgAg5heEAIjJEADEXjLEstwvYTy/5V3W1Oo3u4e9de5bVsKAMPBqAdYT7eHuIpa9ttFz4VCO2EyDpHLToJYw+ju870ljHmU4JdHbE4dJhyKWfi9Bc9/QCUfezBC1HT9a0+m+J4rJNTNE+WezfW0XaHpJDFOFUbl8zhfUYQ+7tsN914fevHrrVRdzOjFDrONTxDJm6gzR3Cgb12p2ZYjaoj58PDXVSePWOqO0J9qT3CBi6Rc/05xH53r5SzNEuT35SeOmTswQm20Ry5jt05urx7MlQ/BzyBDMpv1880L9D5pkCL4BGYLZbB+4zxM9y6uwplb5UZlFZZvwLZfzrWw22+niGxgOvCPRDgnhAkBMhgAgJkMAEJMhAIjJEADE/IIQADEZAoDY8ng8Nv+k4Ooh7RMOe1dls8PkzNzudDGt/sAbjvZyX8j9zhBXD+Oozbwqt2uVScL4tV3rOdwdxvQHXplFyu3OfaHpG2aIsL45qZovha9+g1PHbHpuTZrbZaWIZcD2KdPV4/m0vApr1o3D3cs2zR3Dl2o3blOdMe4uDLP+J0XJGlfEMqZxt3KhJLjH5kxnaknqzTfeYB1d4X1bHpxhvYhlzOwfZJ0yPR71LHhksiUtYdiup0y1mvVLIpZhs1/y3p8hep471R52wXF7M0QehOUT2jPHync3dYbof9DUTACdGSJPGLvSCfTLP37ojPaeBiKWXRpPPC+0vAprmpVhhz01zd6SehjQE59lZRixnftCk1gBICZDABCTIQCIyRAAxGQIAGJ+QQiAmAwBQOwzQzy/K33haAYkw95Uli2Tmmd9WVOrhOPy+CwrO+NTxDLmM6Q2G/dSDru89G+2w1fDfmo9hO1h2OYqv66vVYYRWLYXsYypBtm9lPdZH5U5lr+anIp8KsJBm7A8kiHKHZMaSHwG2WzLz10r5c7pVG6Xu9RW4jIEXye/2U9iL392JENw0DY3zBNAu1bKRzJETzPpgS+1N0P0NJMeOC57GjODvffyey/3nY+VZAi+zq77m/LP/mYilr2+W4b4qKy7m5MwadZzUDiiDNqDK+Dyz7AGclNniP4HTT1pY7M9sEvSGE6RZ4j+e5pmY+ix/YT22tGsLa/CmlrlR/SOhnf8kCF4i1qIlg3yZs/6Zg3kRAwAMRkCgJgMAUBMhgAgJkMAEPMLQgDEZAgAYsvj8dh8yfrqIe2TDHtdGb7HcN9am03Lm54uJjcQeElNM9oh9ztD/P7jttFTjrycM7WNvLIn9xwZOTxtLuibjXC7GcZ5J5Db3j5fNY6DynVAWblpKUMwlVq8yRBcaN4MUa6Ua+vuR/c8aVaGMzBcxecdwi6dF/eyvhb55SOmZodQmjdukuV25y1S52Q7co9W5ioYUAvaPD08OiJ/E8Yill3mzRC/7L3K5/dKzZr+3dcrm/rwoS2JuoF7mlpjEcuA75YhHpXnQuG+PWuR/hkIw3oen4Y1nWuIvE+omTpD9D9o6rx277rcdz5lar4L6JcH9sDz1fIp03mD5fubN0Msr8KaWuW6ftNn0n9tx87O4aAw0sIG4RRIuhKxjBExAMRkCABiMgQAMRkCgJgMAUDMLwgBEJMhAIj9zhDPr0tfO5oB4cjLys0XyXta7j0EHLGJqFrEJi2TNrVmkFs+Pj42YXTdYMbV3sJ6FiV7hc1+bTd7u+kZYyp54IUtd8WniGXMN4megQzRfKcyBG/TmSHyYJMhOF31fuRy5So7X3eXf4ZL7PIWLEweeTIw3zjdJmjDUK8Fbdgs7PZDxLLHvJ9DJI+AmguC2tRab9fSQNksH9JUJ437Cu9gNtt50Cb7iljGzH5/0UwGZWXz7XTeVeXNnjNttjPGHeXR2Ll47cwuIpZ+PyVDDKy7dzWDIzrj89xEAk1TZ4j+B01nZYi9zaY6XdzXF8Vn2UzEssvUn0OshTXNyrDDpKaz2YSni7s7MT7LShHLGBEDQEyGACAmQwAQkyEAiMkQAMT8ghAAMRkCgNjvDPH8uvS1oxkQjnxXZdjm2bKsSXaHYWWM9URdGJ9J0IpYdvl9Efz8+54BVHsL6zkTVjbnT3JCbppTmVAZn0lINydsLSxFLHv96AzxKN5vf4YopzEM688Q+UvNShHLLvNmiF0PfPLr+Ho73zFfsJd7zXO6+DY20ZXftdTiswzjcl9oegnBqRahSXB33unXrv55m812nhjmOV18D+GFPm9TbidhLGLZZZsbZgugsWRQ1jQnVX+fnbvDXp1R2rNiXleKWIbN/uWc4eVC0qBz7uVriNr9HYzpvKdJXsrXECKWAVOvQPsfNDXvks7NEPmxYK/+e5rkpSRDJAeCxMv9xdWDebG8Cmv6mz2itxm+8c5mST3slcd22DKp2VUJCbECQEyGACAmQwAQkyEAiMkQAMT8ghAAMRkCgNhnhliWl2zx/Or024e0T22cZX3YclO5+Vr6puXXvAP4rRaNSbMkYj8ELYe9xOJnbWV7WrWrebmRvxq2/yjOD5xuE3vN+bhpVkskXzZefoR2VrhFkDUHXDbI39fe9nBEfvufpIFaD4KWU8ybIcrlc+cjoHXjWs/NZs1VBZxoVzQ2HygJWs4ydYZobpSNP17nT9IyaWay8Wb90Rg2q+0iaDlo3gxRO3rnQ6Sw8d5m85wHvrcTA1jQcqLZg+zEDNE52cqXwudacKLOZWt/bAtaTjF1huh/0NQcfP9kCxvXKuEUZTQeWSs366HTy0P58N75ooH1flKdVya9hc2e9bXBfMU7hY8ixsKILZs9K5sdwgDRA0BMhgAgJkMAEJMhAIjJEADE/IIQADEZAoDYZ4ZYlm22KGsm9PzSd7Py0f0ee3qrHQLG1MIsbNlTs+lNxDLgd7jUroBXDGnEZibUtnveYzmvyu1aAxhTC7NmfNZqNtsiljG3X0P8Uhtq846seY8mQ/BmzehqhrEMwVnmzRDLq7Bm3Tjcvaxs1tQq9zaGvU58yjTWGDamzhDNjbJxXn8kQ0gPvMfxNcRASwjNmyFqYzhy1z/cm/TA25yVIeac0dyLDNH1Xab+I8JBp2SIOacztzN1huh/0NT8bDn8M6zJe0gqYVhnANcqx+Icml6+V7cJzfDD3rcpP5cua5qVYYdJTVnZf1A4Yiw+85p87kCTWAEgJkMAEJMhAIjJEADEZAgAYn5BCICYDAFA7DNDLMtLtnh+dfrtQ9onHGcy+LJl3uHmi+SdR4G9auHUrCl3rAWtiGWvl+vgZ21le1qdgw8nTN7POlWELW9xfphcEsDNGC63w+AUsQxoX1hvEU+1QSZX/HDHPLs0DwfHbS7l+RoiD0tZgYPaV72rYqtcKdfWzuEga7daJ2YIC3bOtY6o5OI+nCFELHs1MsSF8ZRMlXzOdHbS/LPzaZUpx7nyx5sfe6J0vS1iGdB1A3KhzlHlGaJzFiUtPXHibWrL37BmIEpFLP16L51XOSVDfLw+oUp2lCG4XPlMNWyQb/c3g8TUMdT/oGngyeyRfiY8V9xa/zI3aSxDcLrtLfbmz/AW5k0jK8YQjiqvrPWZNKtV5l3BQZ3R2FPzrG/2DznhAkBMhgAgJkMAEJMhAIjJEADE/IIQADEZAoDYZ4ZYlpds8fz29NuHtE9tnEl9s80jOhud/cOwMKg6J2azRsQy4He4bEKntj2t2qQKJ0n5UtKs/DPfF8bUIrNnYoYheusZzSTacXOLeOqZAL/qmxli0yzvM38JOiUL2eaFPozYWp9JPZSyC+u1a9LlVVizbrzZrt1DJVMxaVbby2TjFGXQ5hH7KBJDT4YQsew17xoimSr5ZMinWXPfsJk1BF+qDNqD9zS1HZN6KM2bIWpHzydMuJ08g+p8VitD8KVqtziPdAp0Nuush9KPyBCP1ydUeefNp1g944Fdao9Jm6FYa1a2bNZDqetrEm8d0Ur/w6L+weeL99qOnYeDMQPL3KSHfEcRS7/tLfbnC5Ubk7dZXoU1zcpan7Udw9172sBBu0KxOVt7aqBJuAAQkyEAiMkQAMRkCABiMgQAMb8gBEBs+efvvxRFURSlLP8PwJeHcjoSr8gAAAAASUVORK5CYII=" alt="" />

实现程序:先通过userName找到UserId,再通过UserId找到用户实体!

       [TestMethod]
public void FindBigData()
{
Stopwatch sw = new Stopwatch();
sw.Start();
var name = RedisClient.RedisManager.Instance.GetDatabase().HashGet("VoteList_UserName", "zzl15");//找到用户ID
if (name.HasValue)
{
var val = RedisClient.RedisManager.Instance.GetDatabase().HashGet("VoteList", name);//找到用户实体
Console.WriteLine("name={0},value={1}", name, val);
}
else
{
Console.WriteLine("没有发现这个Key");
}
sw.Stop();
Console.WriteLine("查询需要的时间:" + sw.ElapsedMilliseconds + "ms");
}

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAvEAAAB7CAIAAABy7kghAAARgElEQVR4nO3dz8skxR3Hcf+S/ieWgT15Ug/ts0c9+oDgRVhknnFPejJ7E7zYDkgkIfKYQwKa0I4biUhcCImshx0mS9TkkAxRgopL3N0OgsQcaqamuupb1TX9Y2aemveLZZnp6a6uqunp/kx1z9MPVQAAABffQ/uuAAAAQA/INAAAIAVkGgAAkAIyDQAASAGZBgAApIBMAwAAUkCmAQAAKSDTAACAFJBpAABACsg0AAAgBWQaAACQAjINAABIAZkGAACkgEwDAABSQKYBAAApINMAAIAUbJ1pMoP46ng8dl/1zS/OEzMzAACAScg0WZaVZZnVFUWhXw0kD5VpxDJ9McUNSWQaAACwLXmcxs0xRVGYWced2RU/Q1XPMeE5e1dOz8x1jaelmj6fFdmJkM/ExctFVTyfb0oZ5beXVUw55tpfffd2Hw0CAOAYec896Rxj/i9mGmupPM+tKe78gUwj5qGtmtTC2ekmgugkF694Pi8XtXLK6Vl8QNFLnV0JxZpyeqbWAgAAXC0zjW8Exco0YgxqHMXR5YhztsgcjXSqaFe4mGni84deaj4r8smr3tmuZGQaAAB8QtfThMdprAf6VWucxirTN+7ixhexnIGcXVlVTEcKdSJJPy2nZ9koH5/mWbY5rzSfFZu2L2rl6BNYVjnWUuqc1GaUaFGqKfqE1GrBRWktIswDAMBxa7ieJibTVPV848s0vjRTOalIZ6PAIv2Sx2kWpRkX9Imh1ajMcp7n66WkcRoda+xy9Jmm9cXUdqZZzsc/KeyXjLVUVeWbBwCAo9X+eprITJMFmfPoH4Gb4z27iTVyLPBkkVW2MF51M40ecXHL0eM0OvS45542YzkjT6bxzAMAwNEaMNOYAcXNJeYiah71I/ALk2mW8/yp9UDL+koXc5xms6xVjvNb99VSy3k+yl5997Z5VY0wTrMoy0XlmwcAgKMVOvdUrZON7yUr0/jOGYUzjX5q/rE+MdOox71fI6wuTLGuStn8MHuU315u5lmNjpyMK2OkJM/z7GQs/pbbKqeq/3i7XEi/5V7O89GmJPsCGvXUMw8AAEdLvkbYGkERA4qZY9zk4S4iMucx/1hftttrhHfHHLNZlJtrbgAAQDehc0+ZdGrJety4rG/OQKZRL6WZaaSRGwAA0J2Qaf4LAABw0XBfbgAAkAIyDQAASAGZBgAApIBMAwAAUkCmAQAAKSDTAACAFJBpAABACsg0AAAgBWQaAACQAjINAABIAZkGAACkYOtMI95V23x1PB6L978Unx6Uew/uffzPj58tn730+iX174Xfv3DnyzsPHjxoXaZ7u3Kx9wJ3A229agAAjoqQabIsK8vSOgAXRaFfDdyX27y9tjW/+NSc6NO9kTHu3rv7xq03Hv7ZwzrQqH9Xfnnlxqc3fEvFVFt8LHaCWH6nVgEAcDTkcRo3xxRFYWYdd2bxoG498B34Yx4P7YO/ffDILx4x08xTbz/19l/ffu7Gc4+/9fhn//5sq9IC1d6qUWQaAAAiec896Rxj/i9mGmupPM/148wZ0REXD4x27Oygbp5yUv9u/evWV/e/evo3T196/dKLH7y4VWmRbRQX3FcPAABwobXMNL7DrZtprNkCmSb8uHJGj/plBZqr7129//39G5/fUE8v//SyuJQvcLhNyJyzTtY8vojToU0AAByR0PU04XEa64F+VWcaXVrmOf1kzeMzbAesqexy9v7ZK3965clfP/ne5+/d+/7eE796omOm0Y8bm+ZmnUD5AADA0nA9TUymqerBxcw0LULJLnOMSWWXl/7w0g//++GTLz75+sHXb83f0sM2gUzTGMWypnEa96lvHgAA4NP+eprGTGMe4N2TVplz5iUmHwznmd8+o+LLF9998eOPP35bffvom4/qTHPtd9fEpWLqlm05TlORaQAA2N6AmcYt0J3fmkGfvdpZlNFufHpD/ZD76ntXP/rHRy//8eXLb1xWgeaxNx+78+UdcamtMo21SCDTbFU+AACowueeqnWy8b1kZRQxkZgvBTKNm4p88wx0jfA3//nmtT+/9vDP7b9Pk5/n7/zlHd9SgcxhZRf3aTjT7HKMCgCABMjXCOvjrvvjbSvTmCeVzBlMkdP1U/fs1SBNd9y9d/fDv3+oT0Jdev3Stfev3Vre+u7+d75F4jNNmJV7AADAtkLnntxhFTNkBNKG+JJYoLis7+zVYXKzmtVLkfMESttX0wAAuECETPMAAADgouG+3AAAIAVkGgAAkAIyDQAASAGZBgAApIBMAwAAUkCmAQAAKSDTAACAFJBpAABACsg0AAAgBWQaAACQAjINAABIQQ+ZZqv7LGZZNh6PG29yGVMs93cEAABan5km5obSKtNUUiKxbtxdlmXjPOJjAABwhAYfp3GTR5gVZQKDN2QaAACgdco0jaMy5mziA3EeHWvCEYdMAwAAtH7GafQlMi5zNl+mcbNLYF0B3dsCAAAuqK6ZRoUJdYmMnpLnuTubOfpiBRFxui7Tl1fIMQAAQOsn05jxQsw05syVJ47o3KP+V2M/gfEbMg0AANC6Xk+jMocKMeZTX2oJZxprnMbKNNZS4acAAOCo9HM9jZtpKv9vsy2VkWbC4zRkGgAA4NNbpjGTh5VpAg+scszcQ6YBAADx+hyn8T01R2tiMo0epxGXCuveHAAAcBH1nGlUsAhfI+wLImKmiQ8rZBoAAI4Z97AEAAApINMAAIAUkGkAAEAKyDQAACAFZBoAAJACMg0AAEgBmQYAAKSATNOP5Xw2ykaz+bKqqqpanGSj2fzmSXay2ENdhlv7ftsVI6aGu2zFodWnL33V+SK2PcYu3/dUtzFXi5YuimLmm3U5n52Xg/THopxOhyn5MEntjez52vu1nM9GWdax6y5EpjF7ZznJR+u/w9fl87kqZ+Lv963MiuvrQFPNismkmM2KybRc6BVNy4V6w0b5ZNmtztm6kOn4ZN0VI8/aA7bu1WHatTjJspPxtFpv0F3e1pi2R/ePybe1NPRhi/oY72mbLl2U0w4bWDXkNiY4pLZf1O2w3brWbcyyzoeQsEU5Nf+8ql7XrJio3o7XrqXT8dg3t3pJ3MK7WM5np7WmCZ+C6fhkujmoZ1YFdJX0G+1OmRWT1b5mtS6hHGceoT59lTMdn1q919jzlfyeNuw0Gh16plHvpfEZXhbFeV+FL8ppf5mmWL8ni6KYLeez6+uSzU3cmK2leiJenK524irtLt21i1r16lDtMoe4FuV5h91KTNuj+kdesr61RPRhu/ro97TP7TPA3fUMs425Dqvth7AdBg4DmyVrPdNyG9NDHe0+C/F1Pi+KZVWtD1pdDlcte9U3GGPM5m7hsph3p6qW18fXdRHip2BRTvM8Vx8xs3plWapX19FhOcnz2XzpTjH2vZspVjnuPG59+irHbXgV1/PSe5pQpjG/pZn9Vf8M7zPT+GpYBQ/qO8k0q8Drq8IkH1nfirr3ao+Z5rwsVUO6HUvk4t22t+NuLcNsmTs+ri/ckfxhtrGoyuyx7QewHQrvhTBT554Jvo/biqrzlsNR8WJ6Vf5gGgElcguPaqmbupz3a1kU526H6ARglqD2q+KUfFPn6+a2apYjzmPWp69yKqmEiJ4XLcbddtc9ZJrp+GSUn57mI3PEuD5WtpzkI3XvbvW/ejv1sGT4A2Z9L7k+Ho+CS6mBskkxU+Oraot3x+6skqfjE1X5WTHRw86RNQzvI8Rjvx7NGxk7cXNdOghbidh3vDGyfJRte3W4dqkPj/qQ62NJj9tPY09shp43X9esKW6PuVPa9GFMfcQtQfezdRrCHB92+8eaYp4XMDeeYbaxQ2/7frdD8b0QS+6eaYwTH5spbj+7a7f2ovF1rh/CrTNog3661dqvOwnVHAwQtvDWLXWvLLHeL1UZN9OoAa31PJMsy8bjsXWmyZyii7cSgFmOOI9n++mhHLftTT0v65i5exmn0UN2y0l+Ws+Vi/X3numkmOn/1TjkeHNEdFtulF7vu5tluawqcxzMpZOgemOkYUa3ZP3SqhXxNay2HqfZDNOtqyqsS31m3E/IEMebmF4dqF3rLwSL03xyszxX4589bj/NPbG6POh04Z2ipoYzTZs+FOtjbqJ6RVaP6Z63TmMbL9n9Y3zfMptmN7Paa6bZY9v3vR3a9fGVPESmqYS9jdCH0l40qs7uIdxsxcC9WrnH0fru2t7Cu7Q0nGl0yVaH1E/TrErWX7OlKWKVxNM9zfuxvsqJuVI4YkT/AMZppDRgf19XrbX+zwzTchF37mkjsK2rRcw3xh0/cEq2WxFfw2r7c0/ra/RG5mHeXJev4a3OC3i7yJ0evwfpq136bZoVkzw/ta5Ki99+4tvuki5ws6c0ZhqtY8YSj+u+b71uZ6o3xe0fT223yDR9bWOBJfbY9gPYDmv18ZU80Lknq1hx7dJeNKrOjZlm0E93ZZ/vsI6awhbeuqXhc0/L+fx8XXK9f+T8px67U1TB7tU/zp5HmMfZfvoqR97vBXtedBDX09hpwPjMbL7fWFutc3G4v/T61m9dLeVZaDnJT8f1i6vrVbVLNl5a6N+VRdawaso0zndE/ba513xtxGea+i/Jo7Tq1UHaZUTP1VL9bj+N9G5Cn3Fwp7jVrvroQ0nzcd0cL7G+c+tucfvHPC9utEsn+NLcX/e+jUUusce27307dOsjltw90yzns5FzjbAvIGqevWhUnbfNNL326qo551KAMJujt/AuLXUvlRXfL+dkXG5mGmMLP1X1saaYAWs5v3lzsz2bex5xHqs+fZUjNHw1NdTzogPINPoUrD6lbf5QMMuyk/H1ST5S19ys/1/tIPQsvkCgh0ZGm8PnqmzVob5drTXiV6/P1CxnvXY9ZZSvrzuLqaESfrecq3nsX8y66zLGhPSqo35nK7GvpGvdqwO0S11CUfu9SY/bj9t2++XaujZ/I8GzbWzW1diHnnU19Kr7gwJpS5CvKanqu1q3f8TfZKryjUA2yDZ28G3f83bo1EdsRfPfXIj85OqSnXd5U6y1dmkvGlNnPWVkRElzG1sO3atqzvX1qvZQgbuFt27pak3GUdzZS1SVsSlO6xnarVLMlUz1js3N72DuPFZ9+iqnqn/9i+x5Ufcf4h3Q755aG+BHCltr8S32wB1Cr6Zn6F7t/iV+OMfc9l3ikyuyrv4elHjFUsLCV9rF93wvh9ELn2la/O0mNKJXhzBkr65+MdTtD+4N6Jjbvkt8cnHkLnymAQAAqMg0AAAgDf1nmizLwhPFGfRLPh2rEV+CWNVeqgQAAIbTQ6YJBBHz2L9tPvBN3GpdvtICq44MQ2QaAAAOSp/jNOowb/7vm8e3YExeEVdnTRdTjjklPv2EGxtHuNOp/rkgv9QAAKAXvWUaNyUEUoiYMMxXfU/dxcX44q7RN0WsUsyr8ZnGvdOp/itG5p8CAwAAXfR27sl86r4UnznEcsTpvhEXsQK+NfqCV6B6Yk6KiTjinVcBAEAv+hyn8Y126BmsB5WUMKyBELcocUXhzOQ+8FUyXD3fxMhMo+90uiink6JQJ6T0HzV270wr3qMKAACI+j/35JviBhcrvnRfo698c343RfkeVFIAal1n54aamz+xr++xV78zrXuPawAA4HVA4zRiCW6SiJnHXam7rvAMvim+iY2s+9GH70k7XZ+iMu9xDQAAAvYzTmNNFPNBODT4Cg88FtfYS6ZxA5yjdlcw87646j6rUqax73EdLB8AgGO303Eacayl2uY3TVZR+qn1qu+lykgkYsni4mJlumSayrjZ6aSYVfKdaYV7XAMAAJ/d3RtBHBrxvRQYTTGX8oWSxsgSUxnfehtfAgAAu7e7vyMcWNZ8aj4wh0ncdbkVsApxH8dUpjHTxLQLAADsGPewBAAAKSDTAACAFJBpAABACsg0AAAgBWQaAACQAjINAABIAZkGAACkgEwDAABSQKYBAAApINMAAIAUkGkAAEAKyDQAACAFZBoAAJACMg0AAEjB/wFY1yCqkJ38UQAAAABJRU5ErkJggg==" alt="" />

通过这个实例让我们知道,做成一件事,可能一步不行,但多几步一定可以实现!

回到目录

Redis学习笔记~关于空间换时间的查询案例的更多相关文章

  1. Redis基础知识之————空间换时间的查询案例

    空间与时间 空间换时间是在数据库中经常出现的术语,简单说就是把查询需要的条件进行索引的存储,然后查询时为O(1)的时间复杂度来快速获取数据,从而达到了使用空间存储来换快速的时间响应!对于redis这个 ...

  2. 【C语言学习笔记】空间换时间,查表法的经典例子!知识就是这么学到的~

    我们怎么衡量一个函数/代码块/算法的优劣呢?这需要从多个角度看待.本篇笔记我们先不考虑代码可读性.规范性.可移植性那些角度. 在我们嵌入式中,我们需要根据实际资源的情况来设计我们的代码.比如当我们能用 ...

  3. Redis学习笔记~目录

    回到占占推荐博客索引 百度百科 redis是一个key-value存储系统.和Memcached类似,它支持存储的value类型相对更多,包括string(字符串).list(链表).set(集合). ...

  4. Redis学习笔记4-Redis配置详解

    在Redis中直接启动redis-server服务时, 采用的是默认的配置文件.采用redis-server   xxx.conf 这样的方式可以按照指定的配置文件来运行Redis服务.按照本Redi ...

  5. Redis学习笔记一:数据结构与对象

    1. String(SDS) Redis使用自定义的一种字符串结构SDS来作为字符串的表示. 127.0.0.1:6379> set name liushijie OK 在如上操作中,name( ...

  6. (转)redis 学习笔记(1)-编译、启动、停止

    redis 学习笔记(1)-编译.启动.停止   一.下载.编译 redis是以源码方式发行的,先下载源码,然后在linux下编译 1.1 http://www.redis.io/download 先 ...

  7. Redis学习笔记二 (BitMap算法分析与BitCount语法)

    Redis学习笔记二 一.BitMap是什么 就是通过一个bit位来表示某个元素对应的值或者状态,其中的key就是对应元素本身.我们知道8个bit可以组成一个Byte,所以bitmap本身会极大的节省 ...

  8. Redis学习笔记4-Redis配置具体解释

    在Redis中直接启动redis-server服务时, 採用的是默认的配置文件.採用redis-server   xxx.conf 这种方式能够依照指定的配置文件来执行Redis服务. 依照本Redi ...

  9. redis学习笔记(详细)——高级篇

    redis学习笔记(详细)--初级篇 redis学习笔记(详细)--高级篇 redis配置文件介绍 linux环境下配置大于编程 redis 的配置文件位于 Redis 安装目录下,文件名为 redi ...

随机推荐

  1. 检查或遍历android手机应程

    检查android手机中是否存在某应程 public boolean checkApp(String packageName) {        if (packageName == null || ...

  2. gitlab安装过程总结

    gitlab总算搭建好了,今天下午完成了第一个工程的导入. 梳理下搭建的过程: 1.下载bitnami的一键安装包,并安装 注意设置权限为777,以免出现某文件写入错误的问题 2.配置邮件服务 分别修 ...

  3. js创建对象的方法

    1. 使用Object构造函数来创建一个对象,下面代码创建了一个person对象,并用两种方式打印出了Name的属性值. var person = new Object(); person.name= ...

  4. JQuery 1.8.3对IE9兼容问题getAttribute

    jQuery1.8.3在IE9下attr报错问题 jQuery1.8.3在IE9中attr方法保存. 解决方案如下: r = e.getAttribute(n); 修改为: r = e.getAttr ...

  5. Alpha、Beta、RC、GA版本的区别 ZT

    http://www.blogjava.net/RomulusW/archive/2008/05/04/197985.html Alpha:是内部测试版,一般不向外部发布,会有很多Bug.一般只有测试 ...

  6. Ubuntu下不重装系统安装SSD总结

    一.要想给自己的机子装个固态,但又不想重装系统,各种配置,那么就要先把自己的系统从HDD复制到SSD上,这里说下我的情况.我的HDD 是500G ubuntu系统,安装的时候没有分区,默认是dev/s ...

  7. 用wordpress搭建个人博客

    一.安装WordPress所需的开发环境. 1.安装apache yum install httpd 2.安装mysql 可参照我的另一篇文章:http://www.cnblogs.com/kings ...

  8. myeclipse导入项目出现乱码

    (1)修改整个工作空间的编码方式: Window->Preferences->General->Workspace->Text file Encoding 在 Others 里 ...

  9. Top ShooterHDU2863&&继续xxx定律HDU3784

    继续xxx定律 HDU3784 先看这个题目:HDU3782 #include<iostream> #include<algorithm> #include<stdio. ...

  10. Flask的socket.error:10053

    一脸懵逼: 学习python一段时间,最近使用flask搭建了一个服务器,然后使用phantom(相当于浏览器)发送请求发送了几条flask就挂掉了,报错信息如下: 由于个人python经验不是很足, ...