/*
题意:有n个点,现在需要联通所有,有q种套餐可以选择,
当然套餐之外也可以自己添加边,意为达到最短距离。 题意很明显,不知道需要使用哪一种套餐,
那么需要枚举每一种套餐的情况。
然后再进行对比。
注意最开始没有套餐的情况。
*/ #include<cstdio>
#include<iostream>
#include<algorithm>
#include<vector> using namespace std; const int maxn = ; class Cor
{
public:
int x,y;
}cor[maxn]; //坐标 class Node
{
public:
int x,y;
int dis;
}edge[maxn*maxn]; //边 vector<int>t[];
int cost[]; //每中套餐的花费
int n,m,q;
int f[maxn]; bool cmp(Node a,Node b)
{
return a.dis < b.dis;
} double distances(Cor a,Cor b)
{
int dx = a.x - b.x;
int dy = a.y - b.y;
return (dx*dx + dy*dy);
} void inti(int n)
{
for(int i = ;i <= n; i++)
f[i] = i;
return ;
} int Find(int x)
{
int r = x;
while(r != f[r])
r = f[r];
int i = x,j;
while(f[i] != r){
j = f[i];
f[i] = r;
i = j;
}
return r;
} int merge(int x,int y)
{
int a = Find(x);
int b = Find(y);
if(a == b)
return false;
else
f[a] = b;
return true;
} int kruskal() //标准的kruskal
{
int pos = ,sum = ;
for(int i = ;i < m && pos < n - ; i++){
if(merge(edge[i].x,edge[i].y)){
pos++;
sum += edge[i].dis;
}
}
return sum;
} void solve()
{
inti(n);
int ans = kruskal(); //初始的情况
for(int i = ;i < (<<q); i++){
int money = ;
inti(n);
for(int j = ;j < q; j++){ //枚举每一种套餐的情况
// if((i>>j)&1) continue;
if(i&(<<j)){
money += cost[j];
for(int k = ;k < t[j].size(); k++){
merge(t[j][k],t[j][]); //把套餐的点相连
}
}
}
ans = min(ans,kruskal() + money);
}
printf("%d\n",ans);
return ;
} int main()
{
// freopen("in.txt","r",stdin);
int ncase,pn = ;
scanf("%d",&ncase);
while(ncase--){
if(pn > ) //UVA的输出
printf("\n");
pn++;
for(int i = ;i < ; i++) //要清理,初始化
t[i].clear();
scanf("%d%d",&n,&q);
for(int i = ;i < q; i++){ //vector是把每一种套餐记录,
// 因为不知道每一种套餐有几个点,所以用vector很合适
int num,temp;
scanf("%d%d",&num,&cost[i]);
for(int j = ;j < num; j++){
scanf("%d",&temp);
t[i].push_back(temp);
}
}
for(int i = ;i <= n; i++)
scanf("%d%d",&cor[i].x,&cor[i].y);
m = ;
for(int i = ;i <= n; i++){
for(int j = i + ;j <= n; j++){
edge[m].x = i;
edge[m].y = j;
edge[m++].dis = distances(cor[i],cor[j]);//计算每一条边的长度
}
}
sort(edge,edge+m,cmp); //kruskal特有
solve();
}
return ;
}

UVA 1151的更多相关文章

  1. UVa 1151 - Buy or Build(最小生成树)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  2. UVA 1151二进制枚举子集 + 最小生成树

    题意:平面上有n个点(1<=N<=1000),你的任务是让所有n个点连通,为此, 你可以新建一些边,费用等于两个端点的欧几里得距离的平方.另外还有q(0<=q<=8)个套餐(数 ...

  3. UVA 1151 买还是建(最小生成树)

    买还是建 紫书P358 [题目链接]买还是建 [题目类型]最小生成树 &题解: 这题真的心累,看了3天,最后照着码还是wa,先放lrj代码,以后再看吧 &代码: // UVa1151 ...

  4. uva 1151(最小生成树,枚举子集)

    题意:平面上有n个点(1<=N<=1000),你的任务是让所有n个点连通,为此,你可以新建一些边,费用等于两个端点的欧几里得距离的平方.另外还有q(0<=q<=8)个套餐,可以 ...

  5. UVA 1151 Buy or Build (MST最小生成树,kruscal,变形)

    题意: 要使n个点之间能够互通,要使两点直接互通需要耗费它们之间的欧几里得距离的平方大小的花费,这说明每两个点都可以使其互通.接着有q个套餐可以选,一旦选了这些套餐,他们所包含的点自动就连起来了,所需 ...

  6. UVa 1151 (枚举 + MST) Buy or Build

    题意: 平面上有n个点,现在要把它们全部连通起来.现在有q个套餐,如果购买了第i个套餐,则这个套餐中的点全部连通起来.也可以自己单独地建一条边,费用为两点欧几里得距离的平方.求使所有点连通的最小费用. ...

  7. 【UVA 1151】 Buy or Build (有某些特别的东东的最小生成树)

    [题意] 平面上有n个点(1<=N<=1000),你的任务是让所有n个点连通,为此,你可以新建一些边,费用等于两个端点的欧几里得距离的平方. 另外还有q(0<=q<=8)个套餐 ...

  8. uva 1151 - Buy or Build poj 2784 Buy or Build(最小生成树)

    最小生成树算法简单 只是增加了一些新的东西,对于需要最小生成树算法 和中 并检查使用的一系列 还有一些更深入的了解. 方法的一些复杂问题 #include<cstdio> #include ...

  9. uva 1151最小生成树

    先求一次最小生成树,可以排除n*(n*1)/2-(n-1)条边,每次利用二进制法枚举套餐的选择,套餐中的点直接处理,如果两个套餐有公共点直接合并,他们一定连通,然后枚举第一步最小生成树得到的n-1条边 ...

随机推荐

  1. 3D图形图像处理软件HOOPS介绍及下载

    HOOPS 3D Application Framework(以下简称HOOPS)是建立在OpenGL.Direct3D等图形编程接口之上的更高级别的应用程序框架.不仅为您提供强大的图形功能,还内嵌了 ...

  2. stella mccartney falabella foldover tote a few eye observed

    Lately, the particular Heyuan City Courtroom retrial, in order to commit the criminal offense of cou ...

  3. 在非spring组件中注入spring bean

    1.在spring中配置如下<context:spring-configured/>     <context:load-time-weaver aspectj-weaving=&q ...

  4. Uploadify使用随笔

    最近项目使用了Uploadify一个上传插件,感觉的挺好用的. 上传控件: 引用JS <script src='<% =ResolveUrl("~/JS/Uploadify/jq ...

  5. js实现全选反选功能

    开始慢慢地学习js&jQuery. function clicked(){ var arr=document.getElementsByName("product"); f ...

  6. 一个比较综合的项目--》>图片缓存,下拉刷新等

    在办公室电脑(E:\workspace\23\Collections)

  7. dos2unix

    dos2unix 实际上就是把文本文件里面的^M删除,我一般懒得用这个命令,vi里面用一个命令(:%s/^m//g)删除即可. 用法举例: dos2unix a.txt b.txt 要把一批文件都do ...

  8. C++ Windows进程管理

    功能: 1.各个进程启动.挂起.恢复.停止等 2.监听进程的运行状态,进程退出(正常.非正常)时,通知用户 3.异步队列 4.线程安全 进程管理器类: #ifndef __ProcessManager ...

  9. Android开源框架:Universal-Image-Loader解析(四)TaskProcess

    Universal-Image-Loader中,对Task的处理有两种方法:FIFO,LIFO 在core/assist下的deque包中,其主要是定义了LIFOLinkedBlockingDeque ...

  10. ArrowLayer : A coustom layer animation

    Since my other answer (animating two levels of masks) has some graphics glitches, I decided to try r ...