Evolutionary Computing: multi-objective optimisation
1. What is multi-objective optimisation
[wikipedia]: Multi-objective optimization (also known as multi-objective programming, vector optimization, multicriteria optimization,multiattribute optimization or Pareto optimization) is an area of multiple criteria decision making, that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously. Multi-objective optimization has been applied in many fields of science, including engineering, economics and logistics (see the section on applications for detailed examples) where optimal decisions need to be taken in the presence of trade-offs between two or more conflicting objectives. Minimizing cost while maximizing comfort while buying a car, and maximizing performance whilst minimizing fuel consumption and emission of pollutants of a vehicle are examples of multi-objective optimization problems involving two and three objectives, respectively. In practical problems, there can be more than three objectives.
For a nontrivial multi-objective optimization problem, there does not exist a single solution that simultaneously optimizes each objective. In that case, the objective functions are said to be conflicting, and there exists a (possibly infinite) number of Pareto optimal solutions. A solution is called nondominated, Pareto optimal, Pareto efficient or noninferior, if none of the objective functions can be improved in value without degrading some of the other objective values. Without additional subjective preference information, all Pareto optimal solutions are considered equally good (as vectors cannot be ordered completely). Researchers study multi-objective optimization problems from different viewpoints and, thus, there exist different solution philosophies and goals when setting and solving them. The goal may be to find a representative set of Pareto optimal solutions, and/or quantify the trade-offs in satisfying the different objectives, and/or finding a single solution that satisfies the subjective preferences of a human decision maker (DM).
2. Your first multi-objective optimisation
Download and install jMetal. Follow the case study in Section 3.3 from the jMetal user manual (available from the jMetal website). Run NSGA-II for 10.000 generations on the benchmark functions ZDT 2 and ZDT 3 with population sizes 10, 100, and 1000. Visualise the six final populations.
Evolutionary Computing: multi-objective optimisation的更多相关文章
- Evolutionary Computing: 5. Evolutionary Strategies(1)
resource: Evolutionary computing, A.E.Eiben Outline What is Evolution Strategies Introductory Exampl ...
- Evolutionary Computing: 5. Evolutionary Strategies(2)
Resource: Introduction to Evolutionary Computing, A.E.Eliben Outline recombination parent selection ...
- Evolutionary Computing: 4. Review
Resource:<Introduction to Evolutionary Computing> 1. What is an evolutionary algorithm? There ...
- Evolutionary Computing: [reading notes]On the Life-Long Learning Capabilities of a NELLI*: A Hyper-Heuristic Optimisation System
resource: On the Life-Long Learning Capabilities of a NELLI*: A Hyper-Heuristic Optimisation System ...
- Evolutionary Computing: 1. Introduction
Outline 什么是进化算法 能够解决什么样的问题 进化算法的重要组成部分 八皇后问题(实例) 1. 什么是进化算法 遗传算法(GA)是模拟生物进化过程的计算模型,是自然遗传学与计算机科学相互结合的 ...
- Evolutionary Computing: Assignments
Assignment 1: TSP Travel Salesman Problem Assignment 2: TTP Travel Thief Problem The goal is to find ...
- Evolutionary Computing: 3. Genetic Algorithm(2)
承接上一章,接着写Genetic Algorithm. 本章主要写排列表达(permutation representations) 开始先引一个具体的例子来进行表述 Outline 问题描述 排列表 ...
- Evolutionary Computing: 2. Genetic Algorithm(1)
本篇博文讲述基因算法(Genetic Algorithm),基因算法是最著名的进化算法. 内容依然来自博主的听课记录和教授的PPT. Outline 简单基因算法 个体表达 变异 重组 选择重组还是变 ...
- Automake
Automake是用来根据Makefile.am生成Makefile.in的工具 标准Makefile目标 'make all' Build programs, libraries, document ...
随机推荐
- node 实现视频播放后端,前端使用video标签,视频文件视频mp4
var fs = require("fs"), http = require("http"), url = require("url"), ...
- [liusy.api-SMJ]-创建工程范例 MAVEN archetype 学习阶段(一)
由于这个架构需要好多不同能力的工程,为了创建方便减少冗余,创建工程范例尤为重要 学习阶段: 参考资料 http://maven.apache.org/archetype/maven-archetype ...
- php生成随机密码的几种方法
方法一: 1.在 33 – 126 中生成一个随机整数,如 35,2.将 35 转换成对应的ASCII码字符,如 35 对应 #3.重复以上 1.2 步骤 n 次,连接成 n 位的密码 该算法主要用到 ...
- Install Jenkins Slave as Windows Service
https://wiki.jenkins-ci.org/display/JENKINS/Installing+Jenkins+as+a+Windows+service SC 直接创建windows s ...
- ORA-1034 ORACLE not available (转)
http://blog.csdn.net/onlyone_htliu/article/details/6075150 前言 每一个DBA在进行数据库管理的过程中不可避免的要遇到形形色色的错误(ORA- ...
- 谷歌 HTML/CSS 规范 2016-12-30
背景 这篇文章定义了 HTML 和 CSS 的格式和代码规范,旨在提高代码质量和协作效率. 通用样式规范 协议 省略图片.样式.脚本以及其他媒体文件 URL 的协议部分(http:,https:),除 ...
- C# 获取当前路径7种方法
//获取模块的完整路径. string path1 = System.Diagnostics.Process.GetCurrentProcess().MainModule.FileName; //获取 ...
- HTML、JavaScript之单双引号转义
一.HTML : 双引号:" 单引号:' 二.JavaScript: 双引号:\" 单引号:\'
- mysql 擎特点
- 《编写可维护的JavaScript》——JavaScript编码规范(三)
啦啦啦啦啦,今天第二篇随笔\(^o^)/~ ////////////////////////////////正文分割线////////////////////////////////////// 直接 ...