来源:Kerson Huang, Lectures on Statistical Physics and Protein Folding, pp 24-25

把双链DNA解开就像拉拉链。设DNA有\(N\)个链环(link),每个链环有两种状态:闭合着或打开着,后一种状态比前一种状态的能量高\(\Delta\)。打开的链环连续地排在一起,闭合的链环连续地排在一起,如下图所示。由于热涨落,链环会自发闭合或打开。问:打开的链环平均有多少?



DNA的拉链模型

DNA的可能状态用打开的链环数目标记,\(n=0,1,2,\cdots,N\)。具有\(n\)个打开的链环的DNA的能量为\(E_n=n\Delta\)。配分函数为

\begin{equation*}Q_N=\sum_{n=0}^N e^{-\beta n\Delta}=\frac{1-e^{-\beta (N+1)\Delta}}{1-e^{-\beta \Delta}}\end{equation*}

上式用到等比数列求和公式\(S_n=\frac{a_1(1-q^n)}{1-q}\)。

打开的链环的平均数为:

\begin{equation*}\begin{split}\overline n=&\frac{\sum_{n=0}^N ne^{-\beta n\Delta}}{\sum_{n=0}^N e^{-\beta n\Delta}}=-\frac{1}{\Delta}\frac{\partial \ln Q_N}{\partial \beta}\\=&\frac{e^{-\beta \Delta}}{1-e^{-\beta \Delta}}-\frac{(N+1)e^{-\beta (N+1)\Delta}}{1-e^{-\beta (N+1) \Delta}}\end{split}\end{equation*}

低温极限下,\(\beta \Delta\gg 1\),打开的链环很少:

\begin{equation*}\overline n\approx e^{-\beta \Delta}\end{equation*}

高温极限下,\(\beta \Delta\ll 1\),几乎所有的链环都是打开的:

\begin{equation*}\overline n\approx n\end{equation*}

DNA解链统计物理的更多相关文章

  1. SQL Server中STATISTICS IO物理读和逻辑读的误区

    SQL Server中STATISTICS IO物理读和逻辑读的误区 大家知道,SQL Server中可以利用下面命令查看某个语句读写IO的情况 SET STATISTICS IO ON 那么这个命令 ...

  2. Performance Monitor4:监控SQL Server的IO性能

    SQL Server的IO性能受到物理Disk的IO延迟和SQL Server内部执行的IO操作的影响.在监控Disk性能时,最主要的度量值(metric)是IO延迟,IO延迟是指从Applicati ...

  3. 利用Caffe做回归(regression)

    Caffe应该是目前深度学习领域应用最广泛的几大框架之一了,尤其是视觉领域.绝大多数用Caffe的人,应该用的都是基于分类的网络,但有的时候也许会有基于回归的视觉应用的需要,查了一下Caffe官网,还 ...

  4. 机器学习&数据挖掘笔记_20(PGM练习四:图模型的精确推理)

    前言: 这次实验完成的是图模型的精确推理.exact inference分为2种,求边缘概率和求MAP,分别对应sum-product和max-sum算法.这次实验涉及到的知识点很多,不仅需要熟悉图模 ...

  5. PRML读书会第十章 Approximate Inference(近似推断,变分推断,KL散度,平均场, Mean Field )

    主讲人 戴玮 (新浪微博: @戴玮_CASIA) Wilbur_中博(1954123) 20:02:04 我们在前面看到,概率推断的核心任务就是计算某分布下的某个函数的期望.或者计算边缘概率分布.条件 ...

  6. 透过统计力学,模拟软物质——EPJE专访2016年玻尔兹曼奖得主Daan Frenkel

    原文来源:Eur. Phys. J. E (2016) 39: 68 2016年玻尔兹曼奖得主Daan Frenkel接受欧洲物理学报E专访,畅谈统计物理在交叉科学研究中的前所未有的重要性. 统计物理 ...

  7. 用 Python 通过马尔可夫随机场(MRF)与 Ising Model 进行二值图降噪

    前言 这个降噪的模型来自 Christopher M. Bishop 的 Pattern Recognition And Machine Learning (就是神书 PRML……),问题是如何对一个 ...

  8. PRML读书会第一章 Introduction(机器学习基本概念、学习理论、模型选择、维灾等)

    主讲人 常象宇 大家好,我是likrain,本来我和网神说的是我可以作为机动,大家不想讲哪里我可以试试,结果大家不想讲第一章.估计都是大神觉得第一章比较简单,所以就由我来吧.我的背景是统计与数学,稍懂 ...

  9. 查看linux内存、cpu

    1.查看cpu数 多核cpu,包括物理多核和逻辑多核,一台机器可能有多个cpu,每个cpu可能有多核的,多个可能包括物理多核和逻辑多核. /proc/cpuinfo 文件里记录了这些信息,以下是一个核 ...

随机推荐

  1. BZOJ 3289: Mato的文件管理[莫队算法 树状数组]

    3289: Mato的文件管理 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 2399  Solved: 988[Submit][Status][Di ...

  2. 【IDEA】intellij idea 插件推荐

    CSDN 2016博客之星评选结果公布    [系列直播]零基础学习微信小程序!      "我的2016"主题征文活动   博客的神秘功能 [IDEA]intellij idea ...

  3. [No0000AE]在 Visual Studio 中调试 XAML 设计时异常

    在 Visual Studio 中进行 WPF, UWP, Silverlight 开发时,经常会遇到 XAML 设计器由于遭遇异常而无法正常显示设计器视图的情况.很多时候由于最终生成的项目在运行时并 ...

  4. 有理数的稠密性(The rational points are dense on the number axis.)

    每一个实数都能用有理数去逼近到任意精确的程度,这就是有理数的稠密性.The rational points are dense on the number axis.

  5. Go语言开发第一个Hello,World

    在网上看到go语言的各种评价,也是闻名已久,但是没有自己实践过,也不知道它的好,它的坏,今天就来试试第一个小程序 第一步.如何下载 1)下载go安装程序 下载地址:https://golang.org ...

  6. vs2015 编译时错误列表中没有错误,dll却没有生成出来

    最近发现vs2015的一个问题, 编译时,错误列表中没有错误,dll却没有生成出来,vs重启也无效 解决: 多次排查发现如果一个类库设置的是framework 4.0版本,但引用了framework4 ...

  7. mac机上搭建php56/nginx 1.8.x/thinkphp 3.2.x/gearman扩展/seaslog扩展/redis扩展环境

    php的各种扩展配置起来实在不容易,记录一下备忘: 一.php56 安装 虽然php7出来了,但是没用过,不知道有没有坑,这里仍然使用php5.6版本 1.1 安装php/php-pfm brew u ...

  8. [LeetCode] Delete Duplicate Emails 删除重复邮箱

    Write a SQL query to delete all duplicate email entries in a table named Person, keeping only unique ...

  9. [LeetCode] Missing Ranges 缺失区间

    Given a sorted integer array where the range of elements are [0, 99] inclusive, return its missing r ...

  10. 做中学(Learning by Doing)之背单词-扇贝网推荐

    做中学(Learning by Doing)之背单词-扇贝网推荐 看完杨贵福老师(博客,知乎专栏,豆瓣)的「继续背单词,8个月过去了」,我就有写这篇文章的冲动了,杨老师说: 有时候我会感觉非常后悔,如 ...