1.GIL锁(Global Interpreter Lock)

  Python代码的执行由Python虚拟机(也叫解释器主循环)来控制。Python在设计之初就考虑到要在主循环中,同时只有一个线程在执行。虽然 Python 解释器中可以“运行”多个线程,但在任意时刻只有一个线程在解释器中运行。

  对Python虚拟机的访问由全局解释器锁(GIL)来控制,正是这个锁能保证同一时刻只有一个线程在运行。

  GIL本质就是一把互斥锁,既然是互斥锁,所有互斥锁的本质都一样,都是将并发运行变成串行,以此来控制同一时间内共享数据只能被一个任务所修改,进而保证数据安全。

python程序运行的过程

1.在内存中加载生成一个进程的内存空间

2.这个内存空间中有有解释器的代码和你要执行进程的代码

3.进程中又有多个线程

4.由于python是一门解释型语言, CPU无法识别python的代码, 所以必须经过解释器来对代码进行编译成二进制的代码(.pyc)

5.但是由于CPython解释器的特性,有一个GIL锁,同一时刻只能有一个线程能进入解释器进行编译

6.当一个线程运行了指定数量的字节码指令或者遇到I/O操作时, GIL锁才会被释放, 后面的线程再去抢GIL锁重复前面的操作

7.所以对于同一个进程中的多个线程是无法同时使用多个CPU的

2.同步锁

  当同时异步提交多个线程, 这些线程都有相同的数据修改操作, 且在数据修改操作之前有I/O操作或者网络延时, 这个时候可能多个进程拿到的数据是相同的, 然后修改后的数据也是相同的, 这样就会造成数据混乱问题. 这个时候就能用到同步锁, 在拿数据前加个锁,修改完之后再释放, 这样就不会有数据混乱的问题.

from threading import Thread
import os,time
def work():
global n
temp=n
time.sleep(0.1)
n=temp-1
if __name__ == '__main__':
n=100
l=[]
for i in range(100):
p=Thread(target=work)
l.append(p)
p.start()
for p in l:
p.join() print(n) #结果可能为99

多个线程抢占资源

from threading import Thread,Lock
import os,time
def work():
global n
lock.acquire()
temp=n
time.sleep(0.1)
n=temp-1
lock.release()
if __name__ == '__main__':
lock=Lock()
n=100
l=[]
for i in range(100):
p=Thread(target=work)
l.append(p)
p.start()
for p in l:
p.join() print(n) #结果肯定为0,由原来的并发执行变成串行,牺牲了执行效率保证了数据安全

同步锁示例

死锁和递归锁

所谓死锁: 是指两个或两个以上的进程或线程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程.

import time
from threading import Thread, Lock, RLock def func1(lockA,lockB):
lockA.acquire()
time.sleep(1)
print("锁A")
lockB.acquire()
print("锁B")
lockB.release()
lockA.release() def func2(lockA,lockB):
lockB.acquire()
print("锁A")
lockA.acquire()
print("锁B")
lockA.release()
lockB.release() if __name__ == '__main__':
lockA = Lock()
lockB = Lock()
t1 = Thread(target=func1, args=(lockA,lockB ))
t1.start()
t2 = Thread(target=func2, args=(lockA, lockB))
t2.start()

死锁现象示例

解决方案: 递归锁, 在Python中为了支持在同一线程中多次请求同一资源,python提供了可重入锁RLock。

这个RLock内部维护着一个Lock和一个counter变量,counter记录了acquire的次数,从而使得资源可以被多次require。直到一个线程所有的acquire都被release,其他的线程才能获得资源。上面的例子如果使用RLock代替Lock,则不会发生死锁:

import time
from threading import Thread, Lock, RLock def func1(lockA,lockB):
lockA.acquire()
time.sleep(1)
print("锁A")
lockB.acquire()
print("锁B")
lockB.release()
lockA.release() def func2(lockA,lockB):
lockB.acquire()
print("锁A")
lockA.acquire()
print("锁B")
lockA.release()
lockB.release() if __name__ == '__main__':
lockA = lockB = RLock()
t1 = Thread(target=func1, args=(lockA,lockB ))
t1.start()
t2 = Thread(target=func2, args=(lockA, lockB))
t2.start()

递归锁RLock

3.GIL锁与同步锁LOCK

锁的目的是都是为了保护共享数据, 同一时刻只能有一个线程来修改共享的数据

GIL是解释器级别的, 保护的是解释器级别的数据, 比如垃圾回收的数据.

Lock是保护用户自己开发的应用程序的数据.

过程分析:所有线程抢的是GIL锁, 或者书所有线程强的是执行权限

线程1抢到GIL锁,拿到执行权限,开始执行,然后加了一把Lock,还没有执行完毕,即线程1还未释放Lock,有可能线程2抢到GIL锁,开始执行,执行过程中发现Lock还没有被线程1释放,于是线程2进入阻塞,被夺走执行权限,有可能线程1拿到GIL,然后正常执行到释放Lock。。。这就导致了串行运行的效果

互斥锁和join的区别

start后立即join: 任务内的所有代码都是串行执行的, 而加锁, 只是加锁的部分即修改共享数据的部分是串行的.

但从保证数据安全方面, 二者都可以实现, 但很明显是加锁的效率更高.

全局解释器锁GIL & 线程锁的更多相关文章

  1. 线程、进程、daemon、GIL锁、线程锁、递归锁、信号量、计时器、事件、队列、多进程

    # 本文代码基于Python3 什么是进程? 程序并不能单独运行,只有将程序装载到内存中,系统为它分配资源才能运行,而这种执行的程序就称之为进程.程序和进程的区别就在于:程序是指令的集合,它是进程运行 ...

  2. 【python】-- GIL锁、线程锁(互斥锁)、递归锁(RLock)

    GIL锁 计算机有4核,代表着同一时间,可以干4个任务.如果单核cpu的话,我启动10个线程,我看上去也是并发的,因为是执行了上下文的切换,让看上去是并发的.但是单核永远肯定时串行的,它肯定是串行的, ...

  3. 04:全局解释器锁(GIL)

    1 全局解释器锁(GIL) 0 pypy(没有全局解释器锁) cpython(99.999999%)    -pypy python好多模块用不了,1 全局解释器锁,GIL锁(cpython解释器的问 ...

  4. 并发编程8 线程的创建&验证线程之间数据共享&守护线程&线程进程效率对比&锁(死锁/递归锁)

    1.线程理论以及线程的两种创建方法 2.线程之间是数据共享的与join方法 3.多线程和多进程的效率对比 4.数据共享的补充线程开启太快 5.线程锁 互斥锁 同步锁 6.死锁现象和递归锁 7.守护线程 ...

  5. iOS 多线程之线程锁Swift-Demo示例总结

    线程锁是什么 在前面的文章中总结过多线程,总结了多线程之后,线程锁也是必须要好好总结的东西,这篇文章构思的时候可能写的东西得许多,只能挤时间一点点的慢慢的总结了,知道了线程之后要了解线程锁就得先了解一 ...

  6. 多线程编程-- part5.1 互斥锁之公平锁-获取锁

    基本概念 1.AQS:AbstractQueuedSynchronizer类 AQS是java中管理“锁”的抽象类,锁的许多公共方法都是在这个类中实现.AQS是独占锁(例如,ReentrantLock ...

  7. Python之路-python(paramiko,进程和线程的区别,GIL全局解释器锁,线程)

    一.paramiko 二.进程.与线程区别 三.python GIL全局解释器锁 四.线程 语法 join 线程锁之Lock\Rlock\信号量 将线程变为守护进程 Event事件 queue队列 生 ...

  8. Python自动化 【第九篇】:Python基础-线程、进程及python GIL全局解释器锁

    本节内容: 进程与线程区别 线程 a)  语法 b)  join c)  线程锁之Lock\Rlock\信号量 d)  将线程变为守护进程 e)  Event事件 f)   queue队列 g)  生 ...

  9. 33、线程与全局解释器锁(GIL)

    之前我们学了很多进程间的通信,多进程并发等等,今天我们来学习线程,线程和进程是什么关系,进程和线程有什么相同而又有什么不同今天就来揭晓这个答案. 一.线程概论 1.何为线程 每个进程有一个地址空间,而 ...

随机推荐

  1. 剑指offer——python【第29题】最小的K个数

    题目描述 输入n个整数,找出其中最小的K个数.例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4,. 思路 先排序后取数,排序可以用冒泡,插入,选择,快排,二分法等等, ...

  2. org.apache.commons.dbcp.SQLNestedException: Cannot create PoolableConnectionFactory (Access denied for user 'root'@'localhost' (using password:

    tationProcessor' to allow for resolving potential circular referencesDEBUG 2018-05-28 11:32:35,016 o ...

  3. 洛谷P3919 【模板】可持久化数组(可持久化线段树/平衡树)

    题目背景 UPDATE : 最后一个点时间空间已经放大 标题即题意 有了可持久化数组,便可以实现很多衍生的可持久化功能(例如:可持久化并查集) 题目描述 如题,你需要维护这样的一个长度为 N 的数组, ...

  4. vim-cscope插件

    在工程根目录生成cscope.out 索引文件的脚本 rm -f cscope* currentPath=$(pwd ) echo $currentPath find $currentPath -na ...

  5. Docker入门6------生产力工具rancher

    rancher的安装: https://blog.csdn.net/wh211212/article/details/80932264 安装 一行命令就可以安装 sudo docker run -d ...

  6. mongodb 3.2 分片 + 副本集

    从图中可以看到有四个组件:mongos.config server.shard.replica set. mongos,数据库集群请求的入口,所有的请求都通过mongos进行协调,不需要在应用程序添加 ...

  7. Spring 学习教程(二): IOC/DI+AOP

    1. IOC / DI Spring是一个基于IOC和AOP的结构J2EE系统的框架 IOC 反转控制 是Spring的基础,Inversion Of Control 简单说就是创建对象由以前的程序员 ...

  8. aws cloudwatch监控怎么通过钉钉机器人报警

    最近在完善海外业务在aws服务的CloudWatchh监控,发现CloudWatch报警通知要通过aws的sns服务,直接支持的通道有短信和邮件,但是我们想推到钉钉群里面的群机器人里面这个就要借助aw ...

  9. 关闭图形界面下普通用户关机重启命令- 7.x - CentOS

    vim /etc/polkit-/rules.d/-inhibit-shutdown.rules polkit.addRule(function(action, subject) { if (acti ...

  10. Cocos Creator 鼠标事件

    鼠标事件// 使用枚举类型来注册node.on(cc.Node.EventType.MOUSE_DOWN, function (event) {console.log('Mouse down');}, ...