参考链接:http://blog.csdn.net/yhb315279058/article/details/50226027
DataFrame类:
DataFrame有四个重要的属性:
index:行索引。
columns:列索引。
values:值的二维数组。
name:名字。
这个类是Pandas最重要的类之一。
构建方法,DataFrame(sequence),通过序列构建,序列中的每个元素是一个字典。
frame=DateFrame构建完之后,假设frame中有'name','age','addr'三个属性,可以使用fame['name']查看属性列内容,也可以fame.name这样直接查看。
frame按照'属性提取出来的每个列是一个Series类。
DataFrame类可以使用布尔型索引。
groupby(str|array...)函数:可以使用frame中对应属性的str或者和frame行数相同的array作为参数还可以使用一个会返回和frame长度相同list的函数作为参数,如果使用函数做分组参数,这个用做分组的函数传入的参数将会是fame的index,参数个数任意。使用了groupby函数之后配合,size()函数就可以对groupby结果进行统计。

groupby后可以使用:
size():就是count
sum():分组求和
apply(func,axis=0):在分组上单独使用函数func返回frame,不groupby用在DataFrame会默认将func用在每个列上,如果axis=1表示将func用在行上。
reindex(index,column,method):用来重新命名索引,和插值。
size():会返回一个frame,这个frame是groupby后的结果。
sum(n).argsort():如果frame中的值是数字,可以使用sum函数计算frame中摸个属性,各个因子分别求和,并返回一个Series,这个Series可以做为frame.take的参数,拿到frame中对应的行。
pivot_table(操作str1,index=str2,columns=str3,aggfunc=str4)透视图函数:
str1:是给函数str4作为参数的部分。
str2:是返回frame的行名。
str3:是返回frame的列名。
str4:是集合函数名,有'mean','sum'这些,按照str2,str3分组。
使用透视图函数之后,可以使用.sum()这类型函数,使用后会按照index和columns的分组求和。
order_index(by,ascending):
返回一个根据by排序,asceding=True表示升序,False表示降序的frame
concat(list):将一个列表的frame行数加起来。
ix[index]:就是行索引,DataFrame的普通下标是列索引。
take(index):作用和ix差不多,都是查询行,但是ix传入行号,take传入行索引。
unstack():将行信息变成列信息。
apply(func,axis=0)和applymap(func):apply用在DataFrame会默认将func用在每个列上,如果axis=1表示将func用在行上。applymap表示func用在每个元素上。
combine_first(frame2):combine_first会把frame中的空值用frame1中对应位置的数据进行填充。Series方法也有相同的方法。
stack()函数,可以将DataFrame的列转化成行,原来的列索引成为行的层次索引。(stack和unstack方法是两个互逆的方法,可以用来进行Series和DataFrame之间的转换)
duplicated():返回一个布尔型Series,表示各行是否重复。
drop_duplicates():返回一个移除了重复行后的DataFrame
pct_change():Series也有这个函数,这个函数用来计算同colnums两个相邻的数字之间的变化率。
corr():计算相关系数矩阵。
cov():计算协方差系数矩阵。
corrwith(Series|list,axis=0):axis=0时计算frame的每列和参数的相关系数。

Series类:
两个重要的属性:
value:存放series值的一个数组。
index:Series的下标索引。
name:就是Series的名字
index有一个name属性。
可以通过Series(list,index=None)的形式来创建一个Series类,index表示的是用下标访问对应的数据。
也可以直接使用字典创建Series(dict)
value_counts():该方法可以用来统计series类中各因子出现的次数,返回一个带统计结果的series。
fillna(str):给series中的空值赋值。
plot()函数:可以用来给带统计结果的函数画图。但是要配合matplotlib使用
notnull():返回一个判断series位置是否空值的布尔型索引。
sum():如果是数字型Series,可以求和。
cumsum():如果是数字型Series,可以返回一个累加的Series。
searchsorted():在数字Series中定位一个数字的位置,这个数字不完全相同,但接近。
map(func):将Series中的元素,每个都当做func的参数使用一遍,返回执行结果组成的Series
unique():类似于sql中的distinct
isnull()/notnull():返回一个布尔型索引
order():对值进行排序。
order_value():对索引进行排序。
unstack()方法:将Series的层次索引转换成列索引,变成一个DataFrame。
replace():可以用list或dict作为参数,替换需要替换的值
str属性:Series.str后会将Series单做一个字符串的集合,这个集合能够使用字符串的操作,例如:
data=Series(['abc','bcd','cde'])
data.str[1]
输出;
1 b
2 c
3 d

read_table()函数:读dat文件。
import pandas as pd
mnames=['movie_id','title','genres']
movies=pd.read_table(r'C:\Users\Administrator\Desktop\python for
data analysis
data\pydata-book-master\ch02\movielens\movies.dat',sep='::',header=None,names=mnames)

read_csv()函数:可以将frame文件直接读成frame。
movies=pd.read_csv(r'names\job1880.txt',names=column)
read_csv函数有一个sep参数,设置分隔符,可以给这个参数传入正则表达式。
skiprows参数,参数是一个list,表示读取文件的时候,跳过list中的几行,第一行为0

read_excel()函数
可以直接读取excel文件为DataFrame

merge(frame1,frame2):
根据两个frame列的名字自动合并,返回一个frame。
此函数可以通过on,left_on,right_on三个属性来设置怎么frame1和frame2通过什么属性来进行连接。

concat函数:
可以将DataFrame或者Series按照axis的方向堆积起来。

cut函数和qcut函数:
可以将一些离散值分箱,cut函数用的是数值区间将数值分箱,qcut用的是分位数。
cut用在长度相等的桶,qcut用在大小相等的桶。

to_datetime(str):
解析常用的时间格式。

date_range函数:
产生时间序列。

【学习】DataFrame&Series类【pandas】的更多相关文章

  1. pandas数据读取(DataFrame & Series)

    1.pandas数据的读取 pandas需要先读取表格类型的数据,然后进行分析 数据说明 说明 pandas读取方法 csv.tsv.txt 用逗号分割.tab分割的纯文本文件 pd.read_csv ...

  2. 【跟着stackoverflow学Pandas】 - Adding new column to existing DataFrame in Python pandas - Pandas 添加列

    最近做一个系列博客,跟着stackoverflow学Pandas. 以 pandas作为关键词,在stackoverflow中进行搜索,随后安照 votes 数目进行排序: https://stack ...

  3. Yaf零基础学习总结5-Yaf类的自动加载

    Yaf零基础学习总结5-Yaf类的自动加载 框架的一个重要功能就是类的自动加载了,在第一个demo的时候我们就约定自己的项目的目录结构,框架就基于这个目录结构来自动加载需要的类文件. Yaf在自启动的 ...

  4. JAVAAPI学习之Calendar类;Calendar类set()、add()、roll()方法区别

    JAVAAPI学习之Calendar类 http://blog.csdn.net/myjlvzlp/article/details/8065775(写的很好,清晰易懂) Calendar类set(). ...

  5. java学习一目了然——File类文件处理

    java学习一目了然--File类文件处理 File类(java.io.File) 构造函数: File(String path) File(String parent,String child) F ...

  6. C++学习之嵌套类和局部类

    C++学习之嵌套类和局部类 局部类 在一个函数体内定义的类称为局部类. 局部类中只能使用它的外围作用域中的对象和函数进行联系,因为外围作用域中的变量与该局部类的对象无关.在定义局部类时需要注意:局部类 ...

  7. C++学习之友元类和友元函数

    C++学习之友元类和友元函数       模板类声明也可以有友元,模板的友元可以分为以下几类:        1.非模板友元:        2.约束模板友元,即就是友元的类型取决于类被实例化的时候的 ...

  8. Java学习笔记——File类之文件管理和读写操作、下载图片

    Java学习笔记——File类之文件管理和读写操作.下载图片 File类的总结: 1.文件和文件夹的创建 2.文件的读取 3.文件的写入 4.文件的复制(字符流.字节流.处理流) 5.以图片地址下载图 ...

  9. Python学习 Part7:类

    Python学习 Part7:类 1. 作用域和命名空间 命名空间(namespace)就是一个从名称到对象的映射. 命名空间的一些实例:内置名称集(函数,像abs(),和内置异常名称),一个模块中的 ...

随机推荐

  1. 指导手册05:MapReduce编程入门

    指导手册05:MapReduce编程入门   Part 1:使用Eclipse创建MapReduce工程 操作系统: Centos 6.8, hadoop 2.6.4 情景描述: 因为Hadoop本身 ...

  2. spring中classpath

    http://blog.csdn.net/wlwlwlwl015/article/details/48134763 Maven 项目的 classpath 理解 applicationContext. ...

  3. useradd语法

    在Linux中 useradd 命令用来创建或更新用户信息. useradd 命令属于比较难用的命令 (low level utility for adding users),所以 Debian 系的 ...

  4. ubuntu 安装 c语言的库函数man手册

    安装 1.C语言库函数基本的帮助文档 sudo apt-get install manpages sudo apt-get install manpages-de sudo apt-get insta ...

  5. Git源码安装 Linux指定安装目录

    1.安装依赖包 $ yum install curl-devel expat-devel gettext-devel openssl-devel zlib-devel 2.下载最新版源码包https: ...

  6. python中calendar模块的常用方法

    >>> import calendar >>> calendar.isleap(2000) #判断是否是闰年 True >>> calendar. ...

  7. CCF-URL映射-(正则匹配)-20180303

    果然正则表达式是一个强大的工具 更短的代码....hhh 版本1: 正则表达式..so easy~~ #include <iostream> #include <algorithm& ...

  8. Linux学习--“杀死”程序

    (cp https://billie66.github.io/TLCL/book/chap11.html) While this is all very straightforward, there ...

  9. python 保存对象文件

    之前用 R 语言一直感觉 .Rdata 格式的文件很好用,可以把每次执行的中间文件保存便于下次调用,刚熟悉 Python 还没接触这块知识,所以有时候做项目不太顺手,索性上网搜了下,整理如下: 模型存 ...

  10. C++ std::async vs async/await in C# - Stack Overflow

    C++ std::async vs async/await in C# - Stack Overflow 我想知道新的c ++功能std::async是否与两个C#关键字async / await相当 ...