在学习或者使用Java的过程中进程会遇到各种各样的锁的概念:公平锁、非公平锁、自旋锁、可重入锁、偏向锁、轻量级锁、重量级锁、读写锁、互斥锁、死锁、活锁等,本文将简概的介绍一下各种锁。

公平锁和非公平锁

公平锁是指多个线程在等待同一个锁时,必须按照申请锁的先后顺序来一次获得锁。

公平锁的好处是等待锁的线程不会饿死,但是整体效率相对低一些;非公平锁的好处是整体效率相对高一些,但是有些线程可能会饿死或者说很早就在等待锁,但要等很久才会获得锁。其中的原因是公平锁是严格按照请求所的顺序来排队获得锁的,而非公平锁时可以抢占的,即如果在某个时刻有线程需要获取锁,而这个时候刚好锁可用,那么这个线程会直接抢占,而这时阻塞在等待队列的线程则不会被唤醒。

公平锁可以使用new ReentrantLock(true)实现。

自旋锁

Java的线程是映射到操作系统的原生线程之上的,如果要阻塞或唤醒一个线程,都需要操作系统来帮忙完成,这就需要从用户态转换到核心态中,因此状态装换需要耗费很多的处理器时间,对于代码简单的同步块(如被synchronized修饰的getter()和setter()方法),状态转换消耗的时间有可能比用户代码执行的时间还要长。

虚拟机的开发团队注意到在许多应用上,共享数据的锁定状态只会持续很短的一段时间,为了这段时间取挂起和恢复现场并不值得。如果物理机器有一个以上的处理器,能让两个或以上的线程同时并行执行,我们就可以让后面请求锁的那个线程“稍等一下“,但不放弃处理器的执行时间,看看持有锁的线程是否很快就会释放锁。为了让线程等待,我们只需让线程执行一个忙循环(自旋),这项技术就是所谓的自旋锁。

自旋等待不能代替阻塞。自旋等待本身虽然避免了线程切换的开销,但它是要占用处理器时间的,因此,如果锁被占用的时间很短,自旋当代的效果就会非常好,反之,如果锁被占用的时间很长,那么自旋的线程只会拜拜浪费处理器资源。因此,自旋等待的时间必须要有一定的限度,如果自旋超过了限定次数(默认是10次,可以使用-XX:PreBlockSpin来更改)没有成功获得锁,就应当使用传统的方式去挂起线程了。

自旋锁在JDK1.4.2中引入,使用-XX:+UseSpinning来开启。JDK6中已经变为默认开启,并且引入了自适应的自旋锁。自适应意味着自旋的时间不在固定了,而是由前一次在同一个锁上的自旋时间及锁的拥有者的状态来决定。

自旋是在轻量级锁中使用的,在重量级锁中,线程不使用自旋。

如果在同一个锁对象上,自旋等待刚刚成功获得过锁,并且持有锁的线程正在运行中,那么虚拟机就会认为这次自旋也是很有可能再次成功,进而它将允许自旋等待持续相对更长的时间,比如100次循环。另外,如果对于某个锁,自旋很少成功获得过,那在以后要获取这个锁时将可能省略掉自旋过程,以避免浪费处理器资源。

锁消除

锁消除是虚拟机JIT在运行时,对一些代码上要求同步,但是被检测到不可能存在共享数据竞争的锁进行消除。锁消除的主要判断依据是来源于逃逸分析的数据支持,如果判断在一段代码中,堆上的所有数据都不会逃逸出去从而能被其他线程访问到,那就可以把他们当做栈上数据对待,认为他们是线程私有的,同步加锁自然就无需进行。

来看这样一个方法:

public String concatString(String s1, String s2, String s3){
StringBuffer sb = new StringBuffer();
sb.append(s1);
sb.append(s2);
sb.append(s3);
return sb.toString();
}

可以知道StringBuffer 的append方法定义如下:

public synchronized StringBuffer append(StringBuffer sb) {
super.append(sb);
return this;
}
 

也就是说在concatString()方法中涉及了同步操作。但是可以观察到sb对象它的作用域被限制在方法的内部,也就是sb对象不会“逃逸”出去,其他线程无法访问。因此,虽然这里有锁,但是可以被安全的消除,在即时编译之后,这段代码就会忽略掉所有的同步而直接执行了。

锁粗化

原则上,我们在编写代码的时候,总是推荐将同步块的作用范围限制的尽量小——只在共享数据的实际作用域中才进行同步,这样是为了使得需要同步的操作数量尽可能变小,如果存在锁禁止,那等待的线程也能尽快拿到锁。大部分情况下,这些都是正确的。但是,如果一些列的联系操作都是同一个对象反复加上和解锁,甚至加锁操作是出现在循环体中的,那么即使没有线程竞争,频繁地进行互斥同步操作也导致不必要的性能损耗。

举个案例,类似锁消除的concatString()方法。如果StringBuffer sb = new StringBuffer();定义在方法体之外,那么就会有线程竞争,但是每个append()操作都对同一个对象反复加锁解锁,那么虚拟机探测到有这样的情况的话,会把加锁同步的范围扩展到整个操作序列的外部,即扩展到第一个append()操作之前和最后一个append()操作之后,这样的一个锁范围扩展的操作就称之为锁粗化。

可重入锁

可重入锁,也叫做递归锁,指的是同一线程外层函数获得锁之后 ,内层递归函数仍然有获取该锁的代码,但不受影响。

在JAVA环境下 ReentrantLock 和synchronized 都是可重入锁。可重入锁最大的作用是避免死锁。

类锁和对象锁

类锁:在方法上加上static synchronized的锁,或者synchronized(xxx.class)的锁。如下代码中的method1和method2:

对象锁:参考method4, method5,method6.

public class LockStrategy{
public Object object1 = new Object(); public static synchronized void method1(){}
public void method2(){
synchronized(LockStrategy.class){}
} public synchronized void method4(){}
public void method5()
{
synchronized(this){}
}
public void method6()
{
synchronized(object1){}
}
}

下面做一道习题来加深一下对对象锁和类锁的理解.
有一个类这样定义:

public class SynchronizedTest{
public synchronized void method1(){}
public synchronized void method2(){}
public static synchronized void method3(){}
public static synchronized void method4(){}
}

那么,有SynchronizedTest的两个实例a和b,对于一下的几个选项有哪些能被一个以上的线程同时访问呢?
A. a.method1() vs. a.method2()
B. a.method1() vs. b.method1()
C. a.method3() vs. b.method4()
D. a.method3() vs. b.method3()
E. a.method1() vs. a.method3()
答案是什么呢?BE

偏向锁、轻量级锁和重量级锁

synchronized的偏向锁、轻量级锁以及重量级锁是通过Java对象头实现的。Java对象的内存布局分为:对象头、实例数据和对其填充,而对象头又可以分为”Mark Word”和类型指针klass。”Mark Word”是关键,默认情况下,其存储对象的HashCode、分代年龄和锁标记位。

这里说的都是以HotSpot虚拟机为基准的。首先来看一下”Mark Word”的内容

锁状态 存储内容 标志位
无锁 对象的hashCode、对象分代年龄、是否是偏向锁(0) 01
轻量级 指向栈中锁记录的指针 00
重量级 指向互斥量(重量级锁)的指针 10
GC标记 (空) 11
偏向锁 偏向线程ID、偏向时间戳、对象分代年龄、是否是偏向锁(1) 01

注意到这里的无锁和偏向锁在”Mark Word”的倒数第三bit中分别采用0和1标记。

偏向锁是JDK6中引入的一项锁优化,它的目的是消除数据在无竞争情况下的同步原语,进一步提高程序的运行性能。

偏向锁会偏向于第一个获得它的线程,如果在接下来的执行过程中,该锁没有被其他的线程获取,则持有偏向锁的线程将永远不需要同步。大多数情况下,锁不仅不存在多线程竞争,而且总是由同一线程多次获得,为了让线程获得锁的代价更低而引入了偏向锁。

当锁对象第一次被线程获取的时候,线程使用CAS操作把这个锁的线程ID记录再对象Mark Word之中,同时置偏向标志位1。以后该线程在进入和退出同步块时不需要进行CAS操作来加锁和解锁,只需要简单地测试一下对象头的Mark Word里是否存储着指向当前线程的偏向锁。如果测试成功,表示线程已经获得了锁。

如果线程使用CAS操作时失败则表示该锁对象上存在竞争并且这个时候另外一个线程获得偏向锁的所有权。当到达全局安全点(safepoint,这个时间点上没有正在执行的字节码)时获得偏向锁的线程被挂起,膨胀为轻量级锁(涉及Monitor Record,Lock Record相关操作,这里不展开),同时被撤销偏向锁的线程继续往下执行同步代码。

当有另外一个线程去尝试获取这个锁时,偏向模式就宣告结束。

线程在执行同步块之前,JVM会先在当前线程的栈帧中创建用于存储锁记录(Lock Record)的空间,并将对象头中的Mard Word复制到锁记录中,官方称为Displaced Mark Word。然后线程尝试使用CAS将对象头中的Mark Word替换为指向锁记录的指针。如果成功,当前线程获得锁,如果失败,表示其他线程竞争锁,当前线程便尝试使用自旋来获取锁。如果自旋失败则锁会膨胀成重量级锁。如果自旋成功则依然处于轻量级锁的状态。

轻量级锁的解锁过程也是通过CAS操作来进行的,如果对象的Mark Word仍然指向线程的锁记录,那就用CAS操作把对象当前的Mark Word和线程中赋值的Displaced Mark Word替换回来,如果替换成功,整个同步过程就完成了,如果替换失败,就说明有其他线程尝试过获取该锁,那就要在释放锁的同时,唤醒被挂起的线程。

轻量级锁提升程序同步性能的依据是:对于绝大部分的锁,在整个同步周期内都是不存在竞争的(区别于偏向锁)。这是一个经验数据。如果没有竞争,轻量级锁使用CAS操作避免了使用互斥量的开销,但如果存在锁竞争,除了互斥量的开销外,还额外发生了CAS操作,因此在有竞争的情况下,轻量级锁比传统的重量级锁更慢。

整个synchronized锁流程如下:

  1. 检测Mark Word里面是不是当前线程的ID,如果是,表示当前线程处于偏向锁
  2. 如果不是,则使用CAS将当前线程的ID替换Mard Word,如果成功则表示当前线程获得偏向锁,置偏向标志位1
  3. 如果失败,则说明发生竞争,撤销偏向锁,进而升级为轻量级锁。
  4. 当前线程使用CAS将对象头的Mark Word替换为锁记录指针,如果成功,当前线程获得锁
  5. 如果失败,表示其他线程竞争锁,当前线程便尝试使用自旋来获取锁。
  6. 如果自旋成功则依然处于轻量级状态。
  7. 如果自旋失败,则升级为重量级锁。

悲观锁和乐观锁

乐观锁与悲观锁不是指具体的什么类型的锁,而是指看待并发同步的角度。
悲观锁认为对于同一个数据的并发操作,一定是会发生修改的,哪怕没有修改,也会认为修改。因此对于同一个数据的并发操作,悲观锁采取加锁的形式。悲观的认为,不加锁的并发操作一定会出问题。
乐观锁则认为对于同一个数据的并发操作,是不会发生修改的。在更新数据的时候,会采用尝试更新,不断重新的方式更新数据。乐观的认为,不加锁的并发操作是没有事情的。

从上面的描述我们可以看出,悲观锁适合写操作非常多的场景,乐观锁适合读操作非常多的场景,不加锁会带来大量的性能提升。
悲观锁在Java中的使用,就是利用各种锁。
乐观锁在Java中的使用,是无锁编程,常常采用的是CAS算法,典型的例子就是原子类,通过CAS自旋实现原子操作的更新。

悲观锁:假定会发生并发冲突,屏蔽一切可能违反数据完整性的操作
乐观锁:假定不会发生并发冲突,只在提交操作时检测是否违反数据完整性。(使用版本号或者时间戳来配合实现)

共享锁和排它锁

共享锁:如果事务T对数据A加上共享锁后,则其他事务只能对A再加共享锁,不能加排它锁。获准共享锁的事务只能读数据,不能修改数据。
排它锁:如果事务T对数据A加上排它锁后,则其他事务不能再对A加任何类型的锁。获得排它锁的事务即能读数据又能修改数据。

读写锁

读写锁是一个资源能够被多个读线程访问,或者被一个写线程访问但不能同时存在读线程。Java当中的读写锁通过ReentrantReadWriteLock实现。具体使用方法这里不展开。

互斥锁

所谓互斥锁就是指一次最多只能有一个线程持有的锁。在JDK中synchronized和JUC的Lock就是互斥锁。

死锁和活锁

死锁是指两个或两个以上的进程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,他们都将无法推进下去。这是一个严重的问题,因为死锁会让你的程序挂起无法完成任务,死锁的发生必须满足一下4个条件:

  • 互斥条件:一个资源每次只能被一个进程使用。
  • 请求与保持条件:一个进程因请求资源而阻塞时,对已获得的资源保持不放。
  • 不剥夺条件:进程已获得的资源,在未使用完之前,不能强行剥夺。
  • 循环等待条件:若干进程之间形成一种头尾相接的循环等待资源关系。

避免死锁最简单的方法就是破坏循环等待条件。

活锁是一种形式活跃性问题,该问题尽管不会阻塞线程,但也不能继续执行,因为线程将不断重复执行相同的操作,而且总会失败。当多个相互协作的线程都对彼此进行响应从而修改各自的状态,并使得任何一个线程都无法继续执行时,就发生了活锁。这就像两个过于礼貌的人在半路上面对面地相遇:他们彼此都给对方让路,然而又在另一条路上相遇,就这样反复里避让下去,导致谁也过不去。

分段锁

要降低锁的竞争程度,其中有一种方式是:减少锁的持有时间、缩小锁的范围、减少锁的粒度。
这种技术可以采用多个相互独立的锁来保护共享资源来实现,这就是分段锁。

然而这会提高程序的复杂度,而且使用的锁越多,发生死锁的风险也就越高。但是要做全局的统计功能时还是需要对共享资源进行全局加锁。ConcurrentHashMap中就采用了分段锁。

无锁

要保证现场安全,并不是一定就要进行同步,两者没有因果关系。同步只是保证共享数据争用时的正确性的手段,如果一个方法本来就不涉及共享数据,那它自然就无须任何同步措施去保证正确性,因此会有一些代码天生就是线程安全的。

  1. 无状态编程。无状态代码有一些共同的特征:不依赖于存储在对上的数据和公用的系统资源、用到的状态量都由参数中传入、不调用非无状态的方法等。
  2. 线程本地存储。可以参考ThreadLocal
  3. volatile
  4. CAS
  5. 协程:在单线程里实现多任务的调度,并在单线程里维持多个任务间的切换。

参考资料

  http://www.importnew.com/19472.html

  https://www.jianshu.com/p/6d9c0b5d2801

Java并发编程(十)-- Java中的锁的更多相关文章

  1. Java并发编程(3) JUC中的锁

    一 前言 前面已经说到JUC中的锁主要是基于AQS实现,而AQS(AQS的内部结构 .AQS的设计与实现)在前面已经简单介绍过了.今天记录下JUC包下的锁是怎么基于AQS上实现的 二 同步锁 同步锁不 ...

  2. Java并发编程系列-(4) 显式锁与AQS

    4 显示锁和AQS 4.1 Lock接口 核心方法 Java在java.util.concurrent.locks包中提供了一系列的显示锁类,其中最基础的就是Lock接口,该接口提供了几个常见的锁相关 ...

  3. Java并发编程:Java的四种线程池的使用,以及自定义线程工厂

    目录 引言 四种线程池 newCachedThreadPool:可缓存的线程池 newFixedThreadPool:定长线程池 newSingleThreadExecutor:单线程线程池 newS ...

  4. [转载] java并发编程:Lock(线程锁)

    作者:海子 原文链接: http://www.cnblogs.com/dolphin0520/p/3923167.html 出处:http://www.cnblogs.com/dolphin0520/ ...

  5. Java并发编程(1)-Java内存模型

    本文主要是学习Java内存模型的笔记以及加上自己的一些案例分享,如有错误之处请指出. 一 Java内存模型的基础 1.并发编程模型的两个问题 在并发编程中,需要了解并会处理这两个关键问题: 1.1.线 ...

  6. Java并发编程:Java中的锁和线程同步机制

    锁的基础知识 锁的类型 锁从宏观上分类,只分为两种:悲观锁与乐观锁. 乐观锁 乐观锁是一种乐观思想,即认为读多写少,遇到并发写的可能性低,每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在更新 ...

  7. Java并发编程 (十) 多线程并发拓展

    个人博客网:https://wushaopei.github.io/    (你想要这里多有) 一.死锁 1.死锁的定义 所谓的死锁是指两个或两个以上的线程在等待执行的过程中,因为竞争资源而造成的一种 ...

  8. Java并发编程-深入Java同步器AQS原理与应用-线程锁必备知识点

    并发编程中我们常会看到AQS这个词,很多朋友都不知道是什么东东,博主经过翻阅一些资料终于了解了,直接进入主题. 简单介绍 AQS是AbstractQueuedSynchronizer类的缩写,这个不用 ...

  9. Java并发编程:Java线程池核心ThreadPoolExecutor的使用和原理分析

    目录 引出线程池 Executor框架 ThreadPoolExecutor详解 构造函数 重要的变量 线程池执行流程 任务队列workQueue 任务拒绝策略 线程池的关闭 ThreadPoolEx ...

  10. 并发编程---线程 ;python中各种锁

    一,概念 在传统操作系统中,每个进程有一个地址空间,而且默认就有一个控制线程 线程顾名思义,就是一条流水线工作的过程,一条流水线必须属于一个车间,一个车间的工作过程是一个进程 --车间负责把资源整合到 ...

随机推荐

  1. Python判断字符串是否xx开始或结尾

    判断是否xx开始 使用startswith 示例代码: String = "12345 上山打老虎" if str(String).startswith('1'): #判断Stri ...

  2. linux-umount挂载点无法卸载:device is busy(解决)

    umount不了的原因一般是由于有程序有用户在占用 解决方法: 1.      首先查找谁在占用:#fuser /mnt/nfs 得到进程号. 2.      查找进程:#ps –ef|grep 进程 ...

  3. WEB测试总结

    WEB测试总结:1.js文件session是否有缓存,如果没有缓存对服务器压力会很大:2.更改页面大小后,图表是否会再次向服务器请求数据:3.表单填写是否对html标识,script脚本做处理:(&l ...

  4. angular-cli ng build 打包完成后 打开文件显示空白

    将index.html 里面的<base href="/"> 改为<base href="./"> 前面加一个 点 就好了,然后再次打包 ...

  5. 滴水穿石-08IO

    1.0 File a:构造方法 package d8; import java.io.File; public class FileGouZao { public static void main(S ...

  6. kafka.common.KafkaException: Failed to acquire lock on file .lock in /tmp/kafka-logs. A Kafka instance in another process or thread is using this directory.

    1.刚才未启动zookeeper集群的时候,直接启动kafka脚本程序,kafka报错了,但是进程号启动起来来,再次启动出现如下所示的问题,这里先将进程号杀死,再启动脚本程序. [hadoop@sla ...

  7. proc/net/dev实时网速统计实例

    https://blog.csdn.net/dosthing/article/details/80384541 http://www.l99.com/EditText_view.action?text ...

  8. Codeforces Round #506 (Div. 3)

    题解: div3水的没有什么意思 abc就不说了 d题比较显然的就是用hash 但是不能直接搞 所以我们要枚举他后面那个数的位数 然后用map判断就可以了 刚开始没搞清楚数据范围写了快速乘竟然被hac ...

  9. 【CF526F】Pudding Monsters

    题意: 给你一个排列pi,问你有对少个区间的值域段是连续的. n≤3e5 题解: bzoj3745

  10. nginx 设置自签名证书以及设置网址http强制转https访问

    自签名证书可以在自己的内网环境或者非对外环境使用,保证通信安装 1.生产证书 直接使用脚本生产: 中途会提示书如1次域名和4次密码,把一下文件保存为sh文件,赋予x权限后 直接执行,根据提示输入. # ...