Description

EOJ439

Solution

先考虑不强制在线怎么做。

按询问区间右端点排序,从左往右扫,维护所有后缀的答案。

如果扫到 \(a[i]\),那么让统计个数的 \(cnt[a[i]]++\).

如果\(cnt[a[i]]<a[i]\),那么在当前的右端点固定的情况下这个\(a[i]\)不会有任何的贡献。

如果\(cnt[a[i]]=a[i]\),那么可以让\([1,pre[i]]\)区间加\(1\),其中\(pre[i]\)代表从\(i\)向前第\(a[i]\)个\(a[i]\)出现的位置。

如果\(cnt[a[i]]>a[i]\),那么需要让\((pos[pos[pre[i]]],pos[pre[i]]]\)区间减\(1\),其中\(pos[i]\)代表从\(i\)向前第\(1\)个\(a[i]\)出现的位置,同时还需要让\((pos[pre[i]],pre[i]]\)区间加\(1\)。

这个放上线段树区间修改单点查询就好了。

但是要求强制在线。

推上主席树。

还要区间修改。

pushdown空间巨大?

标记永久化。

Code

#include<set>
#include<map>
#include<cmath>
#include<queue>
#include<cctype>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using std::min;
using std::max;
using std::swap;
using std::vector;
const int N=1e5+5;
typedef double db;
const int maxn=1e5;
typedef long long ll;
#define pb(A) push_back(A)
#define pii std::pair<int,int>
#define all(A) A.begin(),A.end()
#define mp(A,B) std::make_pair(A,B) vector<int> v[N];
int n,q,a[N],sum[N*30],cov[N*30];
int root[N],ch[N*30][2],cnts[N],tot; int getint(){
int X=0,w=0;char ch=0;
while(!isdigit(ch))w|=ch=='-',ch=getchar();
while( isdigit(ch))X=X*10+ch-48,ch=getchar();
if(w) return -X;return X;
} int modify(int pre,int l,int r,int ql,int qr,int c){
int cur=++tot;
ch[cur][0]=ch[pre][0];ch[cur][1]=ch[pre][1];
sum[cur]=sum[pre]+c*(qr-ql+1);cov[cur]=cov[pre];
if(ql<=l and r<=qr){
cov[cur]+=c;
return cur;
} int mid=l+r>>1;
if(qr<=mid) ch[cur][0]=modify(ch[pre][0],l,mid,ql,qr,c);
else if(ql>mid) ch[cur][1]=modify(ch[pre][1],mid+1,r,ql,qr,c);
else{
ch[cur][0]=modify(ch[pre][0],l,mid,ql,mid,c);
ch[cur][1]=modify(ch[pre][1],mid+1,r,mid+1,qr,c);
} return cur;
} int query(int cur,int l,int r,int ql,int qr,int add){
if(ql<=l and r<=qr) return sum[cur]+add*(r-l+1);
int mid=l+r>>1;
if(qr<=mid) return query(ch[cur][0],l,mid,ql,qr,add+cov[cur]);
else if(ql>mid) return query(ch[cur][1],mid+1,r,ql,qr,add+cov[cur]);
else return query(ch[cur][0],l,mid,ql,mid,add+cov[cur])+query(ch[cur][1],mid+1,r,mid+1,qr,add+cov[cur]);
} signed main(){
n=getint(),q=getint();
for(int i=1;i<=n;i++) v[i].pb(0);
for(int i=1;i<=n;i++){
a[i]=getint();
root[i]=root[i-1];
if(a[i]>n)
continue;
cnts[a[i]]++;
v[a[i]].pb(i);
if(cnts[a[i]]==a[i])
root[i]=modify(root[i],1,n,1,v[a[i]][1],1);
else if(cnts[a[i]]>a[i]){
int sze=v[a[i]].size();
root[i]=modify(root[i],1,n,v[a[i]][sze-a[i]-2]+1,v[a[i]][sze-a[i]-1],-1);
root[i]=modify(root[i],1,n,v[a[i]][sze-a[i]-1]+1,v[a[i]][sze-a[i]],1);
}
} int lasans=0;
while(q--){
int x=getint()^lasans,y=getint()^lasans;
printf("%d\n",lasans=query(root[y],1,n,x,x,0));
} return 0;
}

[EOJ439] 强制在线的更多相关文章

  1. hihocoder #1236 Scores (15北京赛区网络赛J) (五维偏序,强制在线,bitset+分块)

    链接:http://hihocoder.com/problemset/problem/1236 思路; 有n个五维的向量,给出q个询问,每个询问是一个五维向量,问有多少个向量没有一维比这个向量大.并且 ...

  2. 洛谷 P5105 不强制在线的动态快速排序

    P5105 不强制在线的动态快速排序 题目背景 曦月最近学会了快速排序,但是她很快地想到了,如果要动态地排序,那要怎么办呢? 题目描述 为了研究这个问题,曦月提出了一个十分简单的问题 曦月希望维护一个 ...

  3. luoguP5105 不强制在线的动态快速排序 [官方?]题解 线段树 / set

    不强制在线的动态快速排序 题解 算法一 按照题意模拟 维护一个数组,每次直接往数组后面依次添加\([l, r]\) 每次查询时,暴力地\(sort\)查询即可 复杂度\(O(10^9 * q)\),期 ...

  4. luoguP5105 不强制在线的动态快速排序

    emm 可重集合没用用.直接变成不可重复集合 有若干个区间 每个区间形如[L,R] [L,R]计算的话,就是若干个连续奇数的和.拆位统计1的个数 平衡树维护 加入一个[L,R],把相交的区间合并.之后 ...

  5. [BZOJ 3720][JZYZOJ 2016]gty的妹子树 强制在线 树分块/树套树

    jzyzoj的p2016 先码着,强制在线的树分块或者树套树?关键是我树分块还在入门阶段树套树完全不会啊摔   http://blog.csdn.net/jiangyuze831/article/de ...

  6. 倍增 - 强制在线的LCA

    LCA 描述 给一棵有根树,以及一些询问,每次询问树上的 2 个节点 A.B,求它们的最近公共祖先. !强制在线! 输入 第一行一个整数 N. 接下来 N 个数,第 i 个数 F i 表示 i 的父亲 ...

  7. P5105 不强制在线的动态快速排序

    P5105 不强制在线的动态快速排序 $\bigoplus \limits_{i=2}^n (a_i^2-a_{i-1}^2) = \bigoplus \limits_{i=2}^n (a_i-a_{ ...

  8. [Luogu5105]不强制在线的动态快速排序

    首先集合去重不影响答案,然后打表易得连续自然数平方差异或前缀和的规律,于是问题就变为在线维护区间求并同时更新答案,set记录所有区间,每次暴力插入删除即可.由于每个区间至多只会插入删除一次,故均摊复杂 ...

  9. 【Codeforces710F】String Set Queries (强制在线)AC自动机 + 二进制分组

    F. String Set Queries time limit per test:3 seconds memory limit per test:768 megabytes input:standa ...

随机推荐

  1. 初级PM要做什么

    首先让我们看下这张图,产品经理进入公司后将要面临着许多工作 或许你有疑问,如果是产品助理的话,上面这么多工作都要去做吗? 其实不然,初级产品经理由于工作经历有限,对行业的研究以及对市场的把控是有视野限 ...

  2. Linux环境下java开发环境搭建一 JDK搭建

    第一步:下载jdk压缩文件 第二步:上传到家目录下的soft目录下,可以采用winscp,此处下载的是.tar.gz文件 第三步:解压压缩文件,并在/usr/local目录下创建一个jdk7的目录,并 ...

  3. 2019.02.27 bzoj4556: [Tjoi2016&Heoi2016]字符串(二分答案+sam+线段树合并)

    传送门 题意:给一个字符串SSS. 有mmm次询问,每次给四个参数a,b,c,da,b,c,da,b,c,d,问s[a...b]s[a...b]s[a...b]的所有子串和s[x...y]s[x... ...

  4. drf4 视图与路由组件

    APIView和View的区别 不管是View还是APIView最开始调用的都是as_view() APIView继承了View, 并且执行了View中的as_view()方法,最后把view返回了, ...

  5. Python开发——4.集合和字符串拼接

    一.集合(set) 1.集合的特性: 不同元素组成.元素是无序排列的可hash值 2.集合转为列表 s1 = {11,"hechouzi",(11,22,33)} names = ...

  6. ssm中通过ajax或jquer的validate验证原密码与修改密码的正确性

    一.ajax 1. <script type="text/javascript"> //验证原密码1.ajax,正则 var ok1=false,ok2=false,o ...

  7. 【repost】H5的新特性及部分API详解

    h5新特性总览 移除的元素 纯表现的元素: basefont.big.center.font等 对可用性产生负面影响的元素: frame.frameset.noframes 新增的API 语义: 能够 ...

  8. Axure RP Xmind

    官方网站下载地址:http://www.axure.com/download 下载地址:http://www.iaxure.com/2941.html 汉化安装:http://www.iaxure.c ...

  9. Hibernate3.0配置

    我的系统Win10(64x),Eclipse jee 2018-09 ,Sql2018版本. 以下是Hibernate3.0配置包 链接:https://pan.baidu.com/s/10Kizby ...

  10. 做JAVA开发的同学一定遇到过的爆表问题,看这里解决

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由净地发表于云+社区专栏 记一次Java线上服务器CPU过载问题的排查过程,详解排查过程中用到的Java性能监测工具:jvisualvm ...