Dynamic Multimodal Instance Segmentation Guided by Natural Language Queries
2018-09-18 09:58:50

Paperhttp://openaccess.thecvf.com/content_ECCV_2018/papers/Edgar_Margffoy-Tuay_Dynamic_Multimodal_Instance_ECCV_2018_paper.pdf

GitHubhttps://github.com/BCV-Uniandes/query-objseg (PyTorch)

Related paper:

1. Recurrent Multimodal Interaction for Referring Image Segmentation ICCV 2017

  Codehttps://github.com/chenxi116/TF-phrasecut-public (Tensorflow)

2. Segmentation from Natural Language Expressions  ECCV 2016

本文就是在给定 language 后,从图像中分割出所对应的目标物体。所设计的 model,如下所示:

1. Visual Module (VM)

  本文采用 Dual Path Network 92 (DPN92) 来提取 visual feature;

2. Language Module (LM)

本文采用的是 sru,一种新型的快速的 sequential 网络结构。sru 定义为:

我们把  embedding 以及 hidden state 进行 concatenate,然后得到文本中每一个单词的表达,即: rt. 有了这个之后,我们基于 rt 来计算一系列的 动态滤波 fk,t,定义为:

这样,我们可以根据文本 w,就可以得到 文本的特征表达以及对应的动态滤波,即:

3. Synthesis Module (SM)

SM 是我们框架的核心,用于融合多个模态的信息。如图5所示,我们首先将 I以及 空间位置的表达,进行 concatenate,然后用 dynamic filter 对这个结果进行卷积,得到一个响应图,RESP,由 K 个 channel 组成。下一步,我们将 IN,LOC,以及 Ft 沿着 channel dimension 进行 concatenate,得到一个表达 I’。最终,我们用 1*1 的卷积来融合所有的信息,每一个时间步骤,我们有一个输出,即作为 Mt,最终,表达为:

下一步,我们用 mSRU 来产生一个 3D 的 tensor。

4. Upsampling Module (UM) :

最终,我们采用 上采样的方式,得到最终分割的 map 结果。

===== 几点疑问:

1. 作者将 spatial LOC 的信息也结合到网络中?

The same operation can also be found from the reference papers: 

1. Segmentation from Natural Language Expressions ECCV 2016

2.  Recurrent Multimodal Interaction for Referring Image Segmentation ICCV 2017

  In the paper "Segmentation from Natural Language Expressions", I find the following parts to explain why we should use  the spatial location information and concatenate with image feature maps.

2. Run the code successfully. 

 wangxiao@AHU:/DMS$ python3 -u -m dmn_pytorch.train --backend dpn92 --num-filters 10 --lang-layers 3 --mix-we --accum-iters 1
/usr/local/lib/python3.6/site-packages/torch/utils/cpp_extension.py:118: UserWarning: !! WARNING !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Your compiler (c++) may be ABI-incompatible with PyTorch!
Please use a compiler that is ABI-compatible with GCC 4.9 and above.
See https://gcc.gnu.org/onlinedocs/libstdc++/manual/abi.html. See https://gist.github.com/goldsborough/d466f43e8ffc948ff92de7486c5216d6
for instructions on how to install GCC 4.9 or higher.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! WARNING !! warnings.warn(ABI_INCOMPATIBILITY_WARNING.format(compiler))
Argument list to program
--data /DMS/referit_data
--split_root /DMS/referit_data/referit/splits/referit
--save_folder weights/
--snapshot weights/qseg_weights.pth
--num_workers 2
--dataset unc
--split train
--val None
--eval_first False
--workers 4
--no_cuda False
--log_interval 200
--backup_iters 10000
--batch_size 1
--epochs 40
--lr 1e-05
--patience 2
--seed 1111
--iou_loss False
--start_epoch 1
--optim_snapshot weights/qsegnet_optim.pth
--accum_iters 1
--pin_memory False
--size 512
--time -1
--emb_size 1000
--hid_size 1000
--vis_size 2688
--num_filters 10
--mixed_size 1000
--hid_mixed_size 1005
--lang_layers 3
--mixed_layers 3
--backend dpn92
--mix_we True
--lstm False
--high_res False
--upsamp_mode bilinear
--upsamp_size 3
--upsamp_amplification 32
--dmn_freeze False
--visdom None
--env DMN-train Processing unc: train set
loading dataset refcoco into memory...
creating index...
index created.
DONE (t=5.78s)
Saving dataset corpus dictionary...
100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 42404/42404 [10:18<00:00, 68.56it/s]
Processing unc: val set
loading dataset refcoco into memory...
creating index...
index created.
DONE (t=21.52s)
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3811/3811 [00:53<00:00, 71.45it/s]
Processing unc: trainval set
loading dataset refcoco into memory...
creating index...
index created.
DONE (t=4.97s)
0it [00:00, ?it/s]
Processing unc: testA set
loading dataset refcoco into memory...
creating index...
index created.
DONE (t=5.24s)
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1975/1975 [00:27<00:00, 72.62it/s]
Processing unc: testB set
loading dataset refcoco into memory...
creating index...
index created.
DONE (t=5.06s)
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1810/1810 [00:31<00:00, 57.91it/s]
Train begins...
[ 1] ( 0/120624) | ms/batch 456.690311 | loss 3.530792 | lr 0.0000100
[ 1] ( 200/120624) | ms/batch 273.972313 | loss 1.487153 | lr 0.0000100
[ 1] ( 400/120624) | ms/batch 257.813077 | loss 1.036689 | lr 0.0000100
[ 1] ( 600/120624) | ms/batch 251.565860 | loss 1.047311 | lr 0.0000100
[ 1] ( 800/120624) | ms/batch 249.070073 | loss 1.657688 | lr 0.0000100
[ 1] ( 1000/120624) | ms/batch 246.906650 | loss 1.815347 | lr 0.0000100
[ 1] ( 1200/120624) | ms/batch 245.645234 | loss 2.601908 | lr 0.0000100
[ 1] ( 1400/120624) | ms/batch 245.039105 | loss 1.495383 | lr 0.0000100
[ 1] ( 1600/120624) | ms/batch 244.460579 | loss 1.441855 | lr 0.0000100
 

论文笔记:Dynamic Multimodal Instance Segmentation Guided by Natural Language Queries的更多相关文章

  1. 论文笔记《Feedforward semantic segmentation with zoom-out features》

    [论文信息] <Feedforward semantic segmentation with zoom-out features> CVPR 2015 superpixel-level,f ...

  2. 论文笔记 - Calibrate Before Use: Improving Few-Shot Performance of Language Models

    Motivation 无需参数更新的 In-Context Learning 允许使用者在无参数的更新的情况下完成新的下游任务,交互界面是纯粹的自然语言,无 NLP 技术基础的用户也可以创建 NLP ...

  3. 论文阅读笔记二十二:End-to-End Instance Segmentation with Recurrent Attention(CVPR2017)

    论文源址:https://arxiv.org/abs/1605.09410 tensorflow 代码:https://github.com/renmengye/rec-attend-public 摘 ...

  4. Multimodal —— 看图说话(Image Caption)任务的论文笔记(一)评价指标和NIC模型

    看图说话(Image Caption)任务是结合CV和NLP两个领域的一种比较综合的任务,Image Caption模型的输入是一幅图像,输出是对该幅图像进行描述的一段文字.这项任务要求模型可以识别图 ...

  5. Rank & Sort Loss for Object Detection and Instance Segmentation 论文解读(含核心源码详解)

    第一印象 Rank & Sort Loss for Object Detection and Instance Segmentation 这篇文章算是我读的 detection 文章里面比较难 ...

  6. 论文笔记:A Review on Deep Learning Techniques Applied to Semantic Segmentation

    A Review on Deep Learning Techniques Applied to Semantic Segmentation 2018-02-22  10:38:12   1. Intr ...

  7. 论文笔记《Fully Convolutional Networks for Semantic Segmentation》

    一.Abstract 提出了一种end-to-end的做semantic segmentation的方法,也就是FCN,是我个人觉得非常厉害的一个方法. 二.亮点 1.提出了全卷积网络的概念,将Ale ...

  8. 论文笔记系列-Auto-DeepLab:Hierarchical Neural Architecture Search for Semantic Image Segmentation

    Pytorch实现代码:https://github.com/MenghaoGuo/AutoDeeplab 创新点 cell-level and network-level search 以往的NAS ...

  9. Twitter 新一代流处理利器——Heron 论文笔记之Heron架构

    Twitter 新一代流处理利器--Heron 论文笔记之Heron架构 标签(空格分隔): Streaming-process realtime-process Heron Architecture ...

随机推荐

  1. Butterknife 导入项目配置

    在app的 build.gradle 文件中添加 dependencies { // Butterknifeapi 'com.jakewharton:butterknife:8.6.0'annotat ...

  2. mybatis12--一级缓存

    验证一级缓存的存在 对应的实体类 /** *学生对应的实体类 */ public class Student { private Integer sId; private String sName; ...

  3. docker容器与镜像

    就像cad图层概念 数据卷就是为了完成数据持久化操作

  4. Python3学习之路~5.10 PyYAML模块

    Python也可以很容易的处理ymal文档格式,只不过需要安装一个模块,参考文档:http://pyyaml.org/wiki/PyYAMLDocumentation

  5. python基础(15)-socket网络编程&socketserver

    socket 参数及方法说明 初始化参数 sk = socket.socket(参数1,参数2,参数3) 参数1:地址簇 socket.AF_INET IPv4(默认) socket.AF_INET6 ...

  6. python框架之Django(16)-接入Redis

    准备 安装Redis 参考 Ubuntu 中 Redis 的安装与使用. 在python中使用Redis 参考 python 中使用 Redis . 安装依赖包 在 Django 中接入 Redis ...

  7. redis集群(jedis)批量删除同一前缀

    public Set<String> getByPrefix(String key) { Set<String> setResult = new HashSet<> ...

  8. appium环境搭建-运行

    appium是测试移动端的测试工具 首先要下载手机模拟器,或者连接真机.我用的夜神模拟器.安装打开它.安装这个有很高的兼容性要求,我也是小白,摸索了三天才弄出来 一.原理如图: 二.需要安装的软件: ...

  9. HTML基础教程

    <!DOCTYPE html><html> <head> <title></title> </head> <body> ...

  10. (Review cs231n) BN and Activation Function

    CNN网络的迁移学习(transfer learning) 1.在ImageNet上进行网络的预训练 2.将最上方的层,即分类器移除,然后将整个神经网络看成是固定特征提取器来训练,将这个特征提取器置于 ...