题意:

  一条路上有n个地雷,你从1开始走,单位时间内有p的概率走一步,1-p的概率走两步,问安全通过这条路的概率

解析:

 很容易想到 dp[i] = p * dp[i-1] + (1 - p) * dp[i];

  然而。。。t,但这个式子明显可以用矩阵快速幂加个氮气一下加速一下。。。

  把所有的点输入之后 sort一下,那么就能把这条路分成很多段 每一段以地雷为分界线

1 - x[0]  x[0]+1 - x[1]  x[1]+1 - x[2] `````````

然后求出安全通过每一段的概率   乘一下就好了

呐 公式是这个  让 a = p   b = (1 - p) 就好啦

代码是我改了一下bin神的  为什么要改。。。我没大懂大佬们写的多一次方啥意思。。。然后  就讨论了一下范围计算

#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<math.h>
using namespace std; struct Matrix
{
double mat[][];
};
Matrix mul(Matrix a,Matrix b)
{
Matrix ret;
for(int i=;i<;i++)
for(int j=;j<;j++)
{
ret.mat[i][j]=;
for(int k=;k<;k++)
ret.mat[i][j]+=a.mat[i][k]*b.mat[k][j];
}
return ret;
}
Matrix pow_M(Matrix a,int n)
{
Matrix ret;
memset(ret.mat,,sizeof(ret.mat));
for(int i=;i<;i++)ret.mat[i][i]=;
Matrix temp=a;
while(n)
{
if(n&)ret=mul(ret,temp);
temp=mul(temp,temp);
n>>=;
}
return ret;
} int x[];
int main()
{
int n;
double p;
while(cin >> n >> p)
{
for(int i=;i<n;i++)
scanf("%d",&x[i]);
sort(x,x+n);
if(x[] == )
{
puts("0.0000000");
continue;
}
double ans=;
Matrix tt;
tt.mat[][]=p;
tt.mat[][]=-p;
tt.mat[][]=;
tt.mat[][]=;
Matrix temp;
if(x[] > )
{
temp=pow_M(tt,x[]-);
ans*=(-(temp.mat[][] * p + temp.mat[][]));
}
else if(x[] == )
ans *= ( - p);
for(int i=;i<n;i++)
{
if(x[i]==x[i-])continue;
if(x[i]-x[i-] > )
{
temp=pow_M(tt,x[i]-x[i-]-);
ans *= (-(temp.mat[][] * p + temp.mat[][]));
}
else if(x[i]-x[i-] == )
ans *= ( - p);
else if(x[i] - x[i-] == )
ans = ;
}
printf("%.7f\n", ans);
}
return ;
}

Scout YYF I POJ - 3744(概率dp + 矩阵快速幂)的更多相关文章

  1. poj 3744 概率dp+矩阵快速幂

    题意:在一条布满地雷的路上,你现在的起点在1处.在N个点处布有地雷,1<=N<=10.地雷点的坐标范围:[1,100000000]. 每次前进p的概率前进一步,1-p的概率前进1-p步.问 ...

  2. POJ 3744 Scout YYF I 概率dp+矩阵快速幂

    题目链接: http://poj.org/problem?id=3744 Scout YYF I Time Limit: 1000MSMemory Limit: 65536K 问题描述 YYF is ...

  3. poj4474 Scout YYF I(概率dp+矩阵快速幂)

    Scout YYF I Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4100   Accepted: 1051 Descr ...

  4. poj3744 (概率DP+矩阵快速幂)

    http://poj.org/problem?id=3744 题意:在一条铺满地雷的路上,你现在的起点在1处.在N个点处布有地雷,1<=N<=10.地雷点的坐标范围:[1,10000000 ...

  5. poj 3744 Scout YYF 1 (概率DP+矩阵快速幂)

    F - Scout YYF I Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Sub ...

  6. POJ3744 Scout YYF I 概率DP+矩阵快速幂

    http://poj.org/problem?id=3744 题意:一条路,起点为1,有概率p走一步,概率1-p跳过一格(不走中间格的走两步),有n个点不能走,问到达终点(即最后一个坏点后)不踩坏点的 ...

  7. POJ 3744 Scout YYF I (概率dp+矩阵快速幂)

    题意: 一条路上,给出n地雷的位置,人起始位置在1,向前走一步的概率p,走两步的概率1-p,踩到地雷就死了,求安全通过这条路的概率. 分析: 如果不考虑地雷的情况,dp[i],表示到达i位置的概率,d ...

  8. bnuoj 34985 Elegant String DP+矩阵快速幂

    题目链接:http://acm.bnu.edu.cn/bnuoj/problem_show.php?pid=34985 We define a kind of strings as elegant s ...

  9. poj 3070 && nyoj 148 矩阵快速幂

    poj 3070 && nyoj 148 矩阵快速幂 题目链接 poj: http://poj.org/problem?id=3070 nyoj: http://acm.nyist.n ...

随机推荐

  1. sublime text3作为php开发IDE

    phpstorm开发有时候太占内存,会发生卡顿.虽然还是更喜欢用这个IDE哈哈. 一个也很强大的编辑器sublime text3,作为偶尔的替代也很给力.这个内存占用会小不少. 官网下载sublime ...

  2. WPF中TreeView.BringIntoView方法的替代方案

    原文:WPF中TreeView.BringIntoView方法的替代方案 WPF中TreeView.BringIntoView方法的替代方案 周银辉 WPF中TreeView.BringIntoVie ...

  3. Luogu P2827 蚯蚓

    看到题目就可以想到直接开的堆模拟的过程了吧,这个还是很naive的 注意在用堆做的时候也是要明智一点的,对于蚯蚓长度的相加肯定不能直接遍历并加上,还是可以差分一下的 其实说白了就是把集体加->单 ...

  4. Qt5.9使用QWebEngineView加载网页速度非常慢,问题解决

    折腾了大半天终于解决了 原帖地址:https://bugreports.qt.io/browse/QTBUG-44763 BUG单下的留言讲明了问题发生的原因,那就是系统默认设置为自动寻找代理,而使用 ...

  5. Log4net_配置

    Log4net 有三个主要组件:loggers,appenders 和 layouts.这三个组件一起工作使得开发者能够根据信息类型和等级(Level)记录信息,以及在运行时控制信息的格式化和信息的写 ...

  6. 函数:this & return、break、continue、exit()

    this this:的指向在函数定义的时候是确定不了的,只有函数执行的时候才能确定this到底指向谁,实际上this的最终指向的是那个调用它的对象在调用的时候才能决定,谁调用的就指向谁. 情景1:指向 ...

  7. 对我们最常用的软件QQ的看法

    QQ聊天软件是我使用的第一款聊天软件,早在我上小学6年级的时候就开始接触这款软件了,可以说是陪伴我最久的一款软件. 相对于其他的聊天软件,QQ更加的方便,使用简单,界面也好操作,所以我爱上了这款软件. ...

  8. 《Linux内核设计与实现》第十八章读书笔记

    1.内核中的bug 内核中的bug表现得不像用户级程序中那么清晰——因为内核.用户以及硬件之间的交互会很微妙: 从隐藏在源代码中的错误到展现在目击者面前的bug,往往是经历一系列连锁反应的事件才可能触 ...

  9. python语言几个常见函数的使用

    写代码,有如下变量,请按照要求实现每个功能: name = " Kobe Bean Bryant" a. 移除 name 变量对应的值左边的空格,并输出移除后的内容 name = ...

  10. 06-java学习-方法的学习

    方法定义 方法类型 方法涉及的知识: 修饰符.返回类型,命名规则,参数列表 方法常见错误 方法概念的深入理解 为什么会有方法? 方法帮助解决哪些问题? 方法可以简化复杂问题的解决