BZOJ3526[Poi2014]Card——线段树合并
题目描述
有n张卡片在桌上一字排开,每张卡片上有两个数,第i张卡片上,正面的数为a[i],反面的数为b[i]。现在,有m个熊孩子来破坏你的卡片了!
第i个熊孩子会交换c[i]和d[i]两个位置上的卡片。
每个熊孩子捣乱后,你都需要判断,通过任意翻转卡片(把正面变为反面或把反面变成正面,但不能改变卡片的位置),能否让卡片正面上的数从左到右单调不降。
输入
第一行一个n。
接下来n行,每行两个数a[i],b[i]。
接下来一行一个m。
接下来m行,每行两个数c[i],d[i]。
输出
m行,每行对应一个答案。如果能成功,输出TAK,否则输出NIE。
样例输入
2 5
3 4
6 3
2 7
2
3 4
1 3
样例输出
TAK
提示
【样例解释】
交换3和4后,卡片序列为(2,5) (3,4) (2,7) (6,3),不能成功。
交换1和3后,卡片序列为(2,7) (3,4) (2,5) (6,3),翻转第3张卡片,卡片的正面为2,3,5,6,可以成功。
【数据范围】
n≤200000,m≤1000000,0≤a[i],b[i]≤10000000,1≤c[i],d[i]≤n.
线段树合并好题。线段树每个节点维护s[x][0/1][0/1],表示x节点对应区间左/右端点选正/背面区间能否单调不减,每次修改后线段树合并,判断根节点的四种情况是否有合法的就行。
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
inline char _read()
{
static char buf[100000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline int read()
{
int x=0,f=1;char ch=_read();
while(ch>'9'||ch<'0'){if(ch=='-')f=-1;ch=_read();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-'0';ch=_read();}
return x*f;
}
int n,m;
int x,y;
int s[800010][3][3];
int v[400010][3];
void pushup(int rt,int l,int r)
{
int mid=(l+r)>>1;
for(int i=0;i<=1;i++)
{
for(int j=0;j<=1;j++)
{
s[rt][i][j]=0;
for(int k=0;k<=1;k++)
{
for(int l=0;l<=1;l++)
{
s[rt][i][j]|=s[rt<<1][i][k]&s[rt<<1|1][l][j]&(v[mid][k]<=v[mid+1][l]);
}
}
}
}
}
void build(int rt,int l,int r)
{
if(l==r)
{
s[rt][0][0]=s[rt][1][1]=1;
return ;
}
int mid=(l+r)>>1;
build(rt<<1,l,mid);
build(rt<<1|1,mid+1,r);
pushup(rt,l,r);
}
void change(int rt,int l,int r,int k)
{
if(l==r)
{
s[rt][0][0]=s[rt][1][1]=1;
return ;
}
int mid=(l+r)>>1;
if(k<=mid)
{
change(rt<<1,l,mid,k);
}
else
{
change(rt<<1|1,mid+1,r,k);
}
pushup(rt,l,r);
}
int main()
{
n=read();
for(int i=1;i<=n;i++)
{
v[i][0]=read();
v[i][1]=read();
}
build(1,1,n);
m=read();
for(int i=1;i<=m;i++)
{
x=read();
y=read();
swap(v[x][0],v[y][0]);
swap(v[x][1],v[y][1]);
change(1,1,n,x);
change(1,1,n,y);
if(s[1][1][1]|s[1][1][0]|s[1][0][0]|s[1][0][1])
{
printf("TAK\n");
}
else
{
printf("NIE\n");
}
}
return 0;
}
BZOJ3526[Poi2014]Card——线段树合并的更多相关文章
- [BZOJ3526][Poi2014]Card 线段树
链接 题意:有一些卡牌,正反各有一个数,你可以任意翻转,每次操作会将两张卡牌的位置调换,你需要在每次操作后回答以现在的卡牌顺序能否通过反转形成一个单调不降的序列 题解 线段树上维护 \(f[o][0/ ...
- 【bzoj3526】[Poi2014]Card 线段树区间合并
题目描述 有n张卡片在桌上一字排开,每张卡片上有两个数,第i张卡片上,正面的数为a[i],反面的数为b[i].现在,有m个熊孩子来破坏你的卡片了!第i个熊孩子会交换c[i]和d[i]两个位置上的卡片. ...
- 【BZOJ3526】[Poi2014]Card 线段树
[BZOJ3526][Poi2014]Card Description 有n张卡片在桌上一字排开,每张卡片上有两个数,第i张卡片上,正面的数为a[i],反面的数为b[i].现在,有m个熊孩子来破坏你的 ...
- bzoj3526[Poi2014]Card*
bzoj3526[Poi2014]Card 题意: 有n张卡片在桌上一字排开,每张卡片上有两个数,第i张卡片上,正面的数为a[i],反面的数为b[i].有m个操作,第i个操作会交换c[i]和d[i]两 ...
- [XJOI NOI2015模拟题13] C 白黑树 【线段树合并】
题目链接:XJOI - NOI2015-13 - C 题目分析 使用神奇的线段树合并在 O(nlogn) 的时间复杂度内解决这道题目. 对树上的每个点都建立一棵线段树,key是时间(即第几次操作),动 ...
- [BZOJ 2212] [Poi2011] Tree Rotations 【线段树合并】
题目链接:BZOJ - 2212 题目分析 子树 x 内的逆序对个数为 :x 左子树内的逆序对个数 + x 右子树内的逆序对个数 + 跨越 x 左子树与右子树的逆序对. 左右子树内部的逆序对与是否交换 ...
- BZOJ 3307: 雨天的尾巴( LCA + 线段树合并 )
路径(x, y) +z : u处+z, v处+z, lca(u,v)处-z, fa(lca)处-z, 然后dfs一遍, 用线段树合并. O(M log M + M log N). 复杂度看起来不高, ...
- BZOJ2733 [HNOI2012]永无乡 【线段树合并】
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- bzoj 2243 [SDOI2011]染色(树链剖分+线段树合并)
[bzoj2243][SDOI2011]染色 2017年10月20日 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询 ...
随机推荐
- golang 常用包安装
常用到的: go get -v github.com/nsf/gocode go get -v github.com/rogpeppe/godef go get -v golang.org/x/too ...
- [02] URL和HttpURLConnection类
1.URL的概念 统一资源定位符URL(Uniform Resource Locator)是www客户机访问Internet时用来标识资源的名字和地址. URL的基本格式是: <METHOD&g ...
- AutoMapper自动映射
十年河东,十年河西,莫欺少年穷. 学无止境,精益求精. 不扯犊子,直接进入正题: AutoMapper自动映射常用于EF中,能很好的解决DTO和Model之间相互映射的问题.在未使用AutoMappe ...
- 腾讯云COS体验
其实这篇文章本来是推荐COS的,写了一半发现COS的免费额度取消了,2019年之后的开通的用户免费6个月,老用户不受影响,这还让我怎么推荐啊?!写都写了,删掉岂不是白浪费时间? 都怪你!腾讯云! 起因 ...
- Nginx负载均衡中后端节点服务器健康检查的操作梳理
正常情况下,nginx做反向代理,如果后端节点服务器宕掉的话,nginx默认是不能把这台realserver踢出upstream负载集群的,所以还会有请求转发到后端的这台realserver上面,这样 ...
- Puppet常识梳理
Puppet简单介绍 1)puppet是一种Linux/Unix平台下的集中配置管理系统,使用自有的puppet描述语言,可管理配置文件.用户.cron任务.软件包.系统服务等.puppet把这些系统 ...
- 《Linux内核设计与实现》 第一二章学习笔记
<Linux内核设计与实现> 第一二章学习笔记 第一章 Linux内核简介 1.1 Unix的历史 Unix的特点 Unix很简洁,所提供的系统调用都有很明确的设计目的. Unix中一切皆 ...
- sqoop 使用笔记
好久没有更新自己技术博客,现在开始工作了,把自己遇到的问题写到这里边来 主要把自己的问题写出来,分享给大家 sqoop 导入数据时候 有时候会遇到mysql 中有sql 中的关键字 这时候如果直接导出 ...
- OSG中距离转像素公式(PIXEL_SIZE_ON_SCREEN)
osgearth_computerangecallback.cpp 中 下面的代码假设:range模式是PIXEL_SIZE_ON_SCREEN,根据距视点的距离计算在屏幕中的像素大小. 像素大小转距 ...
- leetcode: 638.大礼包
题目描述: https://leetcode-cn.com/problems/shopping-offers/ 解题思路: 这类求最大最小的问题首先想到的就是用DP求解. 这题还用到了递归,首先计算单 ...