[luogu2522][bzoj2301][HAOI2011]Problem b【莫比乌斯反演】
传送门:https://www.luogu.org/problemnew/show/P2522
题目描述
对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。
分析
特殊情况和POI2007 ZAP-Queries相同。
接下来的问题就是解决普遍情况,不难得到答案就是\(ans(b,d)-ans(b,c-1)-ans(a-1,d)+ans(a-1,c-1)\),这是容斥原理。
这道题目有毒,int和long long乱开会T掉,要注意。
ac代码
#include <bits/stdc++.h>
#define ll long long
#define ms(a, b) memset(a, b, sizeof(a))
#define inf 0x3f3f3f3f
using namespace std;
template <typename T>
inline void read(T &x) {
x = 0; T fl = 1;
char ch = 0;
while (ch < '0' || ch > '9') {
if (ch == '-') fl = -1;
ch = getchar();
}
while (ch >= '0' && ch <= '9') {
x = (x << 1) + (x << 3) + (ch ^ 48);
ch = getchar();
}
x *= fl;
}
#define N 50005
int prime[N], mu[N], sum[N];
bool vis[N];
int a, b, c, d, k, cnt;
void get_mu(int MAXN) {
mu[1] = 1;
for (int i = 2; i <= MAXN; i ++) {
if (!vis[i]) {
prime[++ cnt] = i;
mu[i] = -1;
}
for (int j = 1; j <= cnt && prime[j] * i <= MAXN; j ++) {
vis[i * prime[j]] = 1;
if (i % prime[j] == 0) break;
else mu[i * prime[j]] = -mu[i];
}
}
for (int i = 1; i <= MAXN; i ++) sum[i] = sum[i - 1] + mu[i];
}
ll solve(int a, int b) {
ll res = 0;
for (int l = 1, r; l <= min(a, b); l = r + 1) {
r = min(a / (a / l) , b / (b / l));
res += 1ll * (a / (l * k)) * (b / (l * k)) * (sum[r] - sum[l - 1]);
}
return res;
}
int main() {
int cas;
read(cas);
get_mu(50000);
while (cas --) {
read(a); read(b); read(c); read(d); read(k);
printf("%lld\n", solve(b, d) - solve(b, c - 1) - solve(a - 1, d) + solve(a - 1, c - 1));
}
return 0;
}
[luogu2522][bzoj2301][HAOI2011]Problem b【莫比乌斯反演】的更多相关文章
- BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 4032 Solved: 1817[Submit] ...
- BZOJ2301: [HAOI2011]Problem b 莫比乌斯反演
分析:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 然后对于求这样单个的gcd(x,y)=k的, ...
- [bzoj2301][HAOI2011]Problem B —— 莫比乌斯反演+容斥原理
题意 给定a, b, c, d, k,求出: \[\sum_{i=a}^b\sum_{j=c}^d[gcd(i, j) = k]\] 题解 为方便表述,我们设 \[calc(\alpha, \beta ...
- BZOJ2301:[HAOI2011]Problem b(莫比乌斯反演,容斥)
Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数 ...
- [BZOJ1101&BZOJ2301][POI2007]Zap [HAOI2011]Problem b|莫比乌斯反演
对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d. 我们可以令F[n]=使得n|(x,y)的数对(x,y)个数 这个很容易得到,只需要让x, ...
- P2522 [HAOI2011]Problem b (莫比乌斯反演)
题目 P2522 [HAOI2011]Problem b 解析: 具体推导过程同P3455 [POI2007]ZAP-Queries 不同的是,这个题求的是\(\sum_{i=a}^b\sum_{j= ...
- Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x, ...
- BZOJ 2301: [HAOI2011]Problem b 莫比乌斯反演
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 1007 Solved: 415[Submit][ ...
- BZOJ.2301.[HAOI2011]Problem B(莫比乌斯反演 容斥)
[Update] 我好像现在都看不懂我当时在写什么了=-= \(Description\) 求\(\sum_{i=a}^b\sum_{j=c}^d[(i,j)=k]\) \(Solution\) 首先 ...
- [POI2007]ZAP-Queries && [HAOI2011]Problem b 莫比乌斯反演
1,[POI2007]ZAP-Queries ---题面---题解: 首先列出式子:$$ans = \sum_{i = 1}^{n}\sum_{j = 1}^{m}[gcd(i, j) == d]$$ ...
随机推荐
- 分布式理论——quorum原理
编者按:本篇文章是网上一些文章的合集,并不是原创,谢谢各位的分享. 一.基于Quorum投票的冗余控制算法 Quorom 机制,是一种分布式系统中常用的,用来保证数据冗余和最终一致性的投票算法,其主要 ...
- echarts 响应式布局
<body> <!-- 为ECharts准备一个具备大小(宽高)的Dom --> <div id="main" style="width: ...
- Flask_admin 笔记六 modelView的内置方法
增加model后端Flask-Admin对与之配合的数据库模型做了一些假设. 如果要实现自己的数据库后端,并且Flask-Admin的模型视图仍可按预期工作,则应注意以下事项:1) 每一个model必 ...
- BugkuCTF 矛盾
前言 写了这么久的web题,算是把它基础部分都刷完了一遍,以下的几天将持续更新BugkuCTF WEB部分的题解,为了不影响阅读,所以每道题的题解都以单独一篇文章的形式发表,感谢大家一直以来的支持和理 ...
- ireportdesigner下载页面
iReport主页:http://community.jaspersoft.com/project/ireport-designer iReport下载地址:http://sourceforge.ne ...
- 继承:call、apply、bind方法
javascript 中,call 和 apply 都是为了改变某个函数运行时的上下文(context)而存在的,换句话说,就是为了改变函数体内部 this 的指向. call,apply,bind这 ...
- Linux内核设计与实现 第十七章
1. 设备类型 linux中主要由3种类型的设备,分别是: 设备类型 代表设备 特点 访问方式 块设备 硬盘,光盘 随机访问设备中的内容 一般都是把设备挂载为文件系统后再访问 字符设备 键盘,打印机 ...
- 安装python包时报错
pip install numpy 时 报错: Traceback (most recent call last): File "d:\学习\python\python-3.6.5\l ...
- redis的优缺点
优点: 1 读写性能优异 2 支持数据持久化,支持AOF和RDB两种持久化方式 3 支持主从复制,主机会自动将数据同步到从机,可以进行读写分离. 4 数据结构丰富:除了支持string类型的value ...
- Laravel Exception处理逻辑解析
Laravel Exception处理逻辑解析 vendor/laravel/framework/src/Illuminate/Foundation/Application.php app首先继承了c ...