[luogu2522][bzoj2301][HAOI2011]Problem b【莫比乌斯反演】
传送门:https://www.luogu.org/problemnew/show/P2522
题目描述
对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。
分析
特殊情况和POI2007 ZAP-Queries相同。
接下来的问题就是解决普遍情况,不难得到答案就是\(ans(b,d)-ans(b,c-1)-ans(a-1,d)+ans(a-1,c-1)\),这是容斥原理。
这道题目有毒,int和long long乱开会T掉,要注意。
ac代码
#include <bits/stdc++.h>
#define ll long long
#define ms(a, b) memset(a, b, sizeof(a))
#define inf 0x3f3f3f3f
using namespace std;
template <typename T>
inline void read(T &x) {
x = 0; T fl = 1;
char ch = 0;
while (ch < '0' || ch > '9') {
if (ch == '-') fl = -1;
ch = getchar();
}
while (ch >= '0' && ch <= '9') {
x = (x << 1) + (x << 3) + (ch ^ 48);
ch = getchar();
}
x *= fl;
}
#define N 50005
int prime[N], mu[N], sum[N];
bool vis[N];
int a, b, c, d, k, cnt;
void get_mu(int MAXN) {
mu[1] = 1;
for (int i = 2; i <= MAXN; i ++) {
if (!vis[i]) {
prime[++ cnt] = i;
mu[i] = -1;
}
for (int j = 1; j <= cnt && prime[j] * i <= MAXN; j ++) {
vis[i * prime[j]] = 1;
if (i % prime[j] == 0) break;
else mu[i * prime[j]] = -mu[i];
}
}
for (int i = 1; i <= MAXN; i ++) sum[i] = sum[i - 1] + mu[i];
}
ll solve(int a, int b) {
ll res = 0;
for (int l = 1, r; l <= min(a, b); l = r + 1) {
r = min(a / (a / l) , b / (b / l));
res += 1ll * (a / (l * k)) * (b / (l * k)) * (sum[r] - sum[l - 1]);
}
return res;
}
int main() {
int cas;
read(cas);
get_mu(50000);
while (cas --) {
read(a); read(b); read(c); read(d); read(k);
printf("%lld\n", solve(b, d) - solve(b, c - 1) - solve(a - 1, d) + solve(a - 1, c - 1));
}
return 0;
}
[luogu2522][bzoj2301][HAOI2011]Problem b【莫比乌斯反演】的更多相关文章
- BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 4032 Solved: 1817[Submit] ...
- BZOJ2301: [HAOI2011]Problem b 莫比乌斯反演
分析:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 然后对于求这样单个的gcd(x,y)=k的, ...
- [bzoj2301][HAOI2011]Problem B —— 莫比乌斯反演+容斥原理
题意 给定a, b, c, d, k,求出: \[\sum_{i=a}^b\sum_{j=c}^d[gcd(i, j) = k]\] 题解 为方便表述,我们设 \[calc(\alpha, \beta ...
- BZOJ2301:[HAOI2011]Problem b(莫比乌斯反演,容斥)
Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数 ...
- [BZOJ1101&BZOJ2301][POI2007]Zap [HAOI2011]Problem b|莫比乌斯反演
对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d. 我们可以令F[n]=使得n|(x,y)的数对(x,y)个数 这个很容易得到,只需要让x, ...
- P2522 [HAOI2011]Problem b (莫比乌斯反演)
题目 P2522 [HAOI2011]Problem b 解析: 具体推导过程同P3455 [POI2007]ZAP-Queries 不同的是,这个题求的是\(\sum_{i=a}^b\sum_{j= ...
- Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x, ...
- BZOJ 2301: [HAOI2011]Problem b 莫比乌斯反演
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 1007 Solved: 415[Submit][ ...
- BZOJ.2301.[HAOI2011]Problem B(莫比乌斯反演 容斥)
[Update] 我好像现在都看不懂我当时在写什么了=-= \(Description\) 求\(\sum_{i=a}^b\sum_{j=c}^d[(i,j)=k]\) \(Solution\) 首先 ...
- [POI2007]ZAP-Queries && [HAOI2011]Problem b 莫比乌斯反演
1,[POI2007]ZAP-Queries ---题面---题解: 首先列出式子:$$ans = \sum_{i = 1}^{n}\sum_{j = 1}^{m}[gcd(i, j) == d]$$ ...
随机推荐
- cssie7.0兼容
http://www.w3dev.cn/article/20140328/IE7-float-left-touch-border-inner-break.aspx
- CF [2016-2017 ACM-ICPC CHINA-Final][GYM 101194 H] Great Cells
很久以前做的一道思博题了,今天来补一补. 大致题意:在一个\(n*m\)的矩阵内填整数,数字在\([1,k]\)范围内.矩阵中某格的数为great number当且仅当与它同行同列的数字都严格比它小. ...
- checkpoint-BLCR部署和测试(源码)
1. 概述2. 部署过程2.1 源码下载2.2 解压安装2.3 添加库环境2.4 插入内核模块3. 测试3.1 创建测试程序3.2 功能测试4. 参考博客 1. 概述 checkpoint 2. 部署 ...
- width,height为多少px时,A4纸打印时刚好一页?
计算方式一般的分辨率为XX像素/英寸,其中一英寸为25.4毫米.所以一毫米的像素数就为XX/25.4.现在的工作就是求XX的值了,把XX的值求出来以后,直接用XX/25.4 * 210就得到A4纸的像 ...
- Html5前端笔记
获取Dpi 在 window.load中添加: (function(){ if (!window.screen.deviceXDPI){ var tmpNode = document.createEl ...
- Java实验二
北京电子科技学院(BESTI) 实 验 报 告 课程:Java程序设计 班级:1351 姓名:黄君如 学号:20135117 成绩: 指导教师:娄 ...
- is interest important?
学习是不是一定要看兴趣呢?高中时觉得只要肯学即使不喜欢又能如何,大学之后被深深打脸,面对一周那么多的实习和报告,我悄悄告诉自己不是这块料 有一些事情我就是学不会.我却很容易相信一个人. 因此,无论我如 ...
- 北京大学信息科学技术学院本科生课程体系课程大纲选登——计算机网络与WEB技术
- 第三个Sprint ------第三天
出题界面代码 <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android" xmlns ...
- 在-for 循环里面如何利用ref 操作dom
由于dom 元素是在渲染之后才能操作,所以如果想取到dom元素,要放到mounted()这个生命周期函数里面,并且还要用this.$nextTick(function () {})