[luogu2522][bzoj2301][HAOI2011]Problem b【莫比乌斯反演】
传送门:https://www.luogu.org/problemnew/show/P2522
题目描述
对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。
分析
特殊情况和POI2007 ZAP-Queries相同。
接下来的问题就是解决普遍情况,不难得到答案就是\(ans(b,d)-ans(b,c-1)-ans(a-1,d)+ans(a-1,c-1)\),这是容斥原理。
这道题目有毒,int和long long乱开会T掉,要注意。
ac代码
#include <bits/stdc++.h>
#define ll long long
#define ms(a, b) memset(a, b, sizeof(a))
#define inf 0x3f3f3f3f
using namespace std;
template <typename T>
inline void read(T &x) {
x = 0; T fl = 1;
char ch = 0;
while (ch < '0' || ch > '9') {
if (ch == '-') fl = -1;
ch = getchar();
}
while (ch >= '0' && ch <= '9') {
x = (x << 1) + (x << 3) + (ch ^ 48);
ch = getchar();
}
x *= fl;
}
#define N 50005
int prime[N], mu[N], sum[N];
bool vis[N];
int a, b, c, d, k, cnt;
void get_mu(int MAXN) {
mu[1] = 1;
for (int i = 2; i <= MAXN; i ++) {
if (!vis[i]) {
prime[++ cnt] = i;
mu[i] = -1;
}
for (int j = 1; j <= cnt && prime[j] * i <= MAXN; j ++) {
vis[i * prime[j]] = 1;
if (i % prime[j] == 0) break;
else mu[i * prime[j]] = -mu[i];
}
}
for (int i = 1; i <= MAXN; i ++) sum[i] = sum[i - 1] + mu[i];
}
ll solve(int a, int b) {
ll res = 0;
for (int l = 1, r; l <= min(a, b); l = r + 1) {
r = min(a / (a / l) , b / (b / l));
res += 1ll * (a / (l * k)) * (b / (l * k)) * (sum[r] - sum[l - 1]);
}
return res;
}
int main() {
int cas;
read(cas);
get_mu(50000);
while (cas --) {
read(a); read(b); read(c); read(d); read(k);
printf("%lld\n", solve(b, d) - solve(b, c - 1) - solve(a - 1, d) + solve(a - 1, c - 1));
}
return 0;
}
[luogu2522][bzoj2301][HAOI2011]Problem b【莫比乌斯反演】的更多相关文章
- BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 4032 Solved: 1817[Submit] ...
- BZOJ2301: [HAOI2011]Problem b 莫比乌斯反演
分析:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 然后对于求这样单个的gcd(x,y)=k的, ...
- [bzoj2301][HAOI2011]Problem B —— 莫比乌斯反演+容斥原理
题意 给定a, b, c, d, k,求出: \[\sum_{i=a}^b\sum_{j=c}^d[gcd(i, j) = k]\] 题解 为方便表述,我们设 \[calc(\alpha, \beta ...
- BZOJ2301:[HAOI2011]Problem b(莫比乌斯反演,容斥)
Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数 ...
- [BZOJ1101&BZOJ2301][POI2007]Zap [HAOI2011]Problem b|莫比乌斯反演
对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d. 我们可以令F[n]=使得n|(x,y)的数对(x,y)个数 这个很容易得到,只需要让x, ...
- P2522 [HAOI2011]Problem b (莫比乌斯反演)
题目 P2522 [HAOI2011]Problem b 解析: 具体推导过程同P3455 [POI2007]ZAP-Queries 不同的是,这个题求的是\(\sum_{i=a}^b\sum_{j= ...
- Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x, ...
- BZOJ 2301: [HAOI2011]Problem b 莫比乌斯反演
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 1007 Solved: 415[Submit][ ...
- BZOJ.2301.[HAOI2011]Problem B(莫比乌斯反演 容斥)
[Update] 我好像现在都看不懂我当时在写什么了=-= \(Description\) 求\(\sum_{i=a}^b\sum_{j=c}^d[(i,j)=k]\) \(Solution\) 首先 ...
- [POI2007]ZAP-Queries && [HAOI2011]Problem b 莫比乌斯反演
1,[POI2007]ZAP-Queries ---题面---题解: 首先列出式子:$$ans = \sum_{i = 1}^{n}\sum_{j = 1}^{m}[gcd(i, j) == d]$$ ...
随机推荐
- mybatis 反射bean规则
1,根据查询字段名,寻找 bean变量名设置,变量可为私有属性 2,根据查询字段名 set方法名,设置bean属性 此方法 为 ‘set‘+字段名,大小写忽略,即 方法set后面第一个字母可以是大小写 ...
- 汇编 STD和CLD指令
一.用纯汇编封装函数strcmpW 1.用repnz scasw计算字串长度 2.用repz cmpsw比较字串内容 3.把比较的结果存放在EAX里边返回 __declspec(naked) int ...
- 使用Pandas_UDF快速改造Pandas代码
1. Pandas_UDF介绍 PySpark和Pandas之间改进性能和互操作性的其核心思想是将Apache Arrow作为序列化格式,以减少PySpark和Pandas之间的开销. Pandas_ ...
- 面试4——java进程和线程相关知识
1.线程和进程的概念.并行和并发的概念
- HNOI2019 爆零记
HNOI2019爆零记 day \(-inf\) ~ day \(0\) 开学一周之后才停的课,停课之后就开始每天被包菜.我三月份几乎没有更博,就是因为每天都被虐的自闭了. day \(0\) 本来是 ...
- 案例学python——案例三:豆瓣电影信息入库
闲扯皮 昨晚给高中的妹妹微信讲题,函数题,小姑娘都十二点了还迷迷糊糊.今天凌晨三点多,被连续的警报声给惊醒了,以为上海拉了防空警报,难不成地震,空袭?难道是楼下那个车主车子被堵了,长按喇叭?开窗看看, ...
- Quartz_配置
quartz_jobs.xml job 任务 其实就是1.x版本中的<job-detail>,这个节点是用来定义每个具体的任务的,多个任务请创建多个job节点即可 name(必填) 任务名 ...
- linux下文件加密方法总结
为了安全考虑,通常会对一些重要文件进行加密备份或加密保存,下面对linux下的文件加密方法做一简单总结: 方法一:gzexe加密这种加密方式不是非常保险的方法,但是能够满足一般的加密用途,可以隐蔽脚本 ...
- memcached程序端口监控脚本
线上memcached服务器启动了很多实例,端口很多,需要对这些端口进行监控,并在端口关闭的情况下自启动.监控脚本如下: [root@memcache2 ~]# ps -ef|grep /usr/bi ...
- 个人博客作业Week 3 ——微软必应词典客户端
产品:必应词典客户端 (http://bing.msn.cn/dict/)必应词典有PC,Win8/10, Windows Phone,iPhone,Android,iPad 客户端 选择客户端为:i ...