证明:$tan3^0$是无理数.

分析:证明无理数的题目一般用反证法,最经典的就是$\sqrt{2}$是无理数的证明.

这里假设$tan3^0$是有理数,利用二倍角公式容易得到$tan6^0,tan12^0,tan24^0$是有理数,进而$\frac{\sqrt{3}}{3}=tan30^0$也是有理数,矛盾.

评:同样的方法可以证明$tan7^0$无理数。

MT【15】证明无理数(1)的更多相关文章

  1. MT【16】证明无理数(2)

    证明:$sin10^0$为无理数. 分析:此处用$sin$的三倍角公式,结合多项式有有理根必须满足的系数之间的关系可以证明. 评:证明$sin9^0$为无理数就不那么简单.思路:先利用$sin54^0 ...

  2. Python 2.6.6升级到Python2.7.15

    最近在使用Python处理MySQL数据库相关问题时,需要用到Python2.7.5及以上版本,而centos6.5等版本操作系统默认自带的版本为2.6.6,因此需要对python进行升级. Pyth ...

  3. [问题2014S07] 复旦高等代数II(13级)每周一题(第七教学周)

    [问题2014S07]  设 \(A\in M_n(\mathbb{K})\) 在数域 \(\mathbb{K}\) 上的初等因子组为 \(P_1(\lambda)^{e_1},P_2(\lambda ...

  4. JavaScript学习总结(十六)——Javascript闭包(Closure)

    原文地址: http://www.cnblogs.com/xdp-gacl/p/3703876.html 闭包(closure)是Javascript语言的一个难点,也是它的特色, 很多高级应用都要依 ...

  5. [物理学与PDEs]第2章习题6 有旋的 Navier-Stokes 方程组

    试证明: 由 Navier-Stokes 方程组描述的流体运动一般总是有旋的, 即若 $\rot{\bf u}={\bf 0}$, 则 Navier-Stokes 方程组 (3. 4)-(3. 5) ...

  6. 深入理解Plasma(四)Plasma Cash

    这一系列文章将围绕以太坊的二层扩容框架 Plasma,介绍其基本运行原理,具体操作细节,安全性讨论以及未来研究方向等.本篇文章主要介绍在 Plasma 框架下的项目 Plasma Cash. 在上一篇 ...

  7. CSS设计模式之三权分立模式篇 ( 转)

    转自 海玉的博客 市面上我们常常会看到各种各样的设计模式书籍,Java设计模式.C#设计模式.Ruby设计模式等等.在众多的语言设计模式中我唯独找不到关于CSS设计模式的资料,即使在网上找到类似内容, ...

  8. python 基础(四) 函数

    函数 一.什么是函数? 函数是可以实现一些特定功能的 小方法 或者是小程序 优点: 提高 了代码的后期维护 增加了代码的重复使用率 减少了代码量 提高了代码可读性 二.函数的定义 使用 def关键+函 ...

  9. 欧几里得证明$\sqrt{2}$是无理数

    选自<费马大定理:一个困惑了世间智者358年的谜>,有少许改动. 原译者:薛密 \(\sqrt{2}\)是无理数,即不能写成一个分数.欧几里得以反证法证明此结论.第一步是假定相反的事实是真 ...

随机推荐

  1. git使用备注

    git clone 代码库地址 git branch -r  查看远程分支 git branch 查看本地分支 git branch -a 查看远程和本地分支.带*的表示正在所处分支. git bra ...

  2. MFC入门(三)-- MFC图片/文字控件(循环显示文字和图片的小程序)

    惯例附上前几个博客的链接: MFC入门(一)简单配置:http://blog.csdn.net/zmdsjtu/article/details/52311107 MFC入门(二)读取输入字符:http ...

  3. 3.2《想成为黑客,不知道这些命令行可不行》(Learn Enough Command Line to Be Dangerous)——检查文件开始与结尾

    检查文件两个互补的命令是head 和tail, 它们分别用于查看文件的开始(头部)和结束(尾部).head命令展示了文件的前10行.(Listing 11). ##Listing 11: 查看示例文件 ...

  4. Angularjs实现select的下拉列表

    练习使用angularjs实现一个select下拉列表: <div ng-app="selectApp" ng-controller="selectControll ...

  5. nginx 安装问题

    yum -y install  xxx pcre-devel  openssl-devel   zlib-devel  这个三个包需要 有时候,我们需要单独安装nginx,来处理大量的下载请求.单独在 ...

  6. 重启 IIS7 应用或者应用程序池的批处理bat

    重启应用 本地: ctrl+r->iisreset -stop ctrl+r->iisreset -start ctrl+r->iisreset 远程(假如远程机器地址为10.5.6 ...

  7. Scala学习(五)---Scala中的类

    Scala中的类 摘要: 在本篇中,你将会学习如何用Scala实现类.如果你了解Java或C++中的类,你不会觉得这有多难,并且你会很享受Scala更加精简的表示法带来的便利.本篇的要点包括: 1. ...

  8. 【nodejs】让nodejs像后端mvc框架(asp.net mvc )一样处理请求--自动路由篇(1/8)【route】

    文章目录 前情概要 在使用express框架开发的时候,每加一个请求,都在增加一条route请求规则,类似于下面的代码,很烦有木有! app.use('/myroute path', (req, re ...

  9. 图像数据增强 (Data Augmentation in Computer Vision)

    1.1 简介 深层神经网络一般都需要大量的训练数据才能获得比较理想的结果.在数据量有限的情况下,可以通过数据增强(Data Augmentation)来增加训练样本的多样性, 提高模型鲁棒性,避免过拟 ...

  10. Tomcat通过Memcached实现session共享的完整部署记录

    对于web应用集群的技术实现而言,最大的难点就是:如何能在集群中的多个节点之间保持数据的一致性,会话(Session)信息是这些数据中最重要的一块.要实现这一点, 大体上有两种方式:一种是把所有Ses ...