已知$f(x)=2\sqrt{(\cos x+\frac{1}{2})^2+\sin^2 x}-\sqrt{\cos^2 x+(\sin x-\frac{1}{2})^2}$,若$m\ge f(x)$恒成立,求$m$的范围_______.

提示:

设 $A'(-\dfrac{1}{2},0),B(0,\dfrac{1}{2}),A(-2,0),P(x,y)$为单位圆上的点,

则$f(x)=2|PA'|-|PB|=|PA|-|PB|\le |AB|=\dfrac{\sqrt{17}}{2}$故$m\ge\dfrac{\sqrt{17}}{2}$

值此而立之年,附一首:

满江红·写怀

宋代岳飞

怒发冲冠,凭栏处、潇潇雨歇。抬望眼,仰天长啸,壮怀激烈。三十功名尘与土,八千里路云和月。莫等闲,白了少年头,空悲切!(栏 通:阑)
靖康耻,犹未雪。臣子恨,何时灭!驾长车,踏破贺兰山缺。壮志饥餐胡虏肉,笑谈渴饮匈奴血。待从头、收拾旧山河,朝天阙。

MT【191】阿波罗尼乌斯圆的更多相关文章

  1. MT【107】立体几何中用阿波罗尼乌斯圆的一道题

    分析:利用内外圆知识知道,B,C两点到 AD 的距离$\le4$. 利用体积公式$V=\frac{1}{3}S_{截面}|AD|\le2\sqrt{15}$

  2. MT【253】仿射和蒙日圆

    如图,设点$M(x_0,y_0)$是椭圆$C:\dfrac{x^2}{2}+y^2=1$上一点,从原点$O$向圆$M:(x-x_0)^2+(y-y_0)^2=\dfrac{2}{3}$作两条切线分别与 ...

  3. 普林斯顿数学指南(第三卷) (Timothy Gowers 著)

    第V部分 定理与问题 V.1 ABC猜想 V.2 阿蒂亚-辛格指标定理 V.3 巴拿赫-塔尔斯基悖论 V.4 Birch-Swinnerton-Dyer 猜想 V.5 卡尔松定理 V.6 中心极限定理 ...

  4. 如何阅读一本书——分析阅读Pre

    如何阅读一本书--分析阅读Pre 前情介绍 作者: 莫提默.艾德勒 查尔斯.范多伦 初版:1940年,一出版就是全美畅销书榜首一年多.钢铁侠Elon.Musk学过. 需要注意的句子: 成功的阅读牵涉到 ...

  5. MT【290】内外圆求三角最值

    求$\sqrt{\dfrac{5}{4}-\sin x}+2\sqrt{\dfrac{9}{4}+\cos x-\sin x}$的最小值. 提示:$\sqrt{\dfrac{5}{4}-\sin x} ...

  6. 天气预报API(二):全球城市、景点代码列表(“旧编码”)

    说明 2016-12-10 补充 (后来)偶然发现中国天气网已经有城市ID列表的网页...还发现城市编码有两种,暂且称中国天气网这些编码为旧标准"旧编码"的特征是 9个字符长度; ...

  7. 世界城市 XML

    下载地址:http://www.qlcoder.com/uploads/dd01140921/147988679320159.xml <Location> <CountryRegio ...

  8. python爬虫爬取全球机场信息

    --2013年10月10日23:54:43 今天需要获取机场信息,发现一个网站有数据,用爬虫趴下来了所有数据: 目标网址:http://www.feeyo.com/airport_code.asp?p ...

  9. JS城市data

    CityData = { "中国": { "北京": ["东城区", "西城区", "崇文区", & ...

随机推荐

  1. WebApi 异步请求(HttpClient)

    还是那几句话: 学无止境,精益求精 十年河东,十年河西,莫欺少年穷 学历代表你的过去,能力代表你的现在,学习代表你的将来 废话不多说,直接进入正题: 今天公司总部要求各个分公司把短信接口对接上,所谓的 ...

  2. BodeAbp服务端介绍

    BodeAbp服务端只提供api,绝大部分api通过abp的动态WebApi机制提供,原理可以参考这篇文章:http://www.cnblogs.com/1zhk/p/5418694.html 与业务 ...

  3. 闭包----你所不知道的JavaScript系列(4)

    一.闭包是什么? · 闭包就是可以使得函数外部的对象能够获取函数内部的信息. · 闭包是一个拥有许多变量和绑定了这些变量的环境的表达式(通常是一个函数),因而这些变量也是该表达式的一部分. · 闭包就 ...

  4. mysql 通过慢查询日志查写得慢的sql语句

    MySQL通过慢查询日志定位那些执行效率较低的SQL 语句,用--log-slow-queries[=file_name]选项启动时,mysqld 会写一个包含所有执行时间超过long_query_t ...

  5. .net 2.0 使用linq

    .net 2.0 使用linq,主要是使用Linq to Object,没有测试Linq to XML. 方法: 新建一个net2.0的程序,然后添加对System.Core.Dll的引用.引用时vs ...

  6. php安全配置记录和常见错误梳理

    通常部署完php环境后会进行一些安全设置,除了熟悉各种php漏洞外,还可以通过配置php.ini来加固PHP的运行环境,PHP官方也曾经多次修改php.ini的默认设置.下面对php.ini中一些安全 ...

  7. 微信小程序中的组件

    前言 之前做小程序开发的时候,对于开发来说比较头疼的莫过于自定义组件了,当时官方对这方面的文档也只是寥寥几句,一笔带过而已,所以写起来真的是非常非常痛苦!! 好在微信小程序的库从 1.6.3 开始,官 ...

  8. C. A Mist of Florescence

    链接 [http://codeforces.com/contest/989/problem/C] 题意 给定A B C D四个字符个数,让你构造一个矩阵使得他们的个数恰好那么多,联通块算一块 分析 构 ...

  9. ELF分析 实践

    分析ELF文件: 首先编写一个.c文件,并使用gcc -c xx.c -o xx.o 对其进行编译. 我在这个实践中是ELF_1.o文件. 接下来输入ls -l ELF_1.o 查看重定位文件的信息. ...

  10. JSONObject使用方法详解

    1.JSONObject介绍 JSONObject-lib包是一个beans,collections,maps,java arrays和xml和JSON互相转换的包. 2.下载jar包 http:// ...