【BZOJ4813】【CQOI2017】小Q的棋盘(贪心)

题面

BZOJ

洛谷

题解

果然是老年选手了,这种题都不会做了。。。。

先想想一个点如果被访问过只有两种情况,第一种是进入了这个点所在的子树并且还要再次回到它的父亲,那么为了访问这个点你要花费\(2\)步,另外一种是进入了这个点你不回去了,那么这个点你只需要花费一步。对于不会去的情况而言,显然自上而下是一条链,那么我们肯定把最长链给找出来,最长链上的点都不再回去了,而其他的点访问一次的贡献就是\(2\),直接计算就做完了。

#include<iostream>
#include<cstdio>
#include<queue>
using namespace std;
#define MAX 111
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
struct Line{int v,next;}e[MAX<<1];
int h[MAX],cnt=1;
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;}
int n,K,dep[MAX];
void bfs()
{
queue<int> Q;Q.push(1);dep[1]=1;
while(!Q.empty())
{
int u=Q.front();Q.pop();
for(int i=h[u];i;i=e[i].next)
if(!dep[e[i].v])
dep[e[i].v]=dep[u]+1,Q.push(e[i].v);
}
}
int main()
{
n=read();K=read();
for(int i=1;i<n;++i)
{
int u=read()+1,v=read()+1;
Add(u,v);Add(v,u);
}
bfs();int mx=0;
for(int i=1;i<=n;++i)mx=max(mx,dep[i]);
if((n-mx)*2<=K-mx+1)printf("%d\n",n);
else if(K<=mx-1)printf("%d\n",K+1);
else printf("%d\n",mx+(K-mx+1)/2);
return 0;
}

【BZOJ4813】[CQOI2017]小Q的棋盘(贪心)的更多相关文章

  1. [BZOJ4813][CQOI2017]小Q的棋盘(DP,贪心)

    4813: [Cqoi2017]小Q的棋盘 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 804  Solved: 441[Submit][Statu ...

  2. [bzoj4813][Cqoi2017]小Q的棋盘

    来自FallDream的博客,未经允许,请勿转载,谢谢. 小Q正在设计一种棋类游戏.在小Q设计的游戏中,棋子可以放在棋盘上的格点中.某些格点之间有连线,棋子只能在有连线的格点之间移动.整个棋盘上共有V ...

  3. 2019.03.11 bzoj4813: [Cqoi2017]小Q的棋盘(贪心)

    传送门 考虑最后所有走过的点构成的树,显然除了最长链走一遍以外每条轻链都走两遍. 于是求一波最长链搞一搞就完了. 注意几个小细节特判qwq 代码: #include<bits/stdc++.h& ...

  4. BZOJ4813 CQOI2017小Q的棋盘(树形dp)

    设f[i][j]为由i号点开始在子树内走j步最多能经过多少格点,g[i][j]为由i号点开始在子树内走j步且回到i最多能经过多少格点,转移显然. #include<iostream> #i ...

  5. bzoj 4813: [Cqoi2017]小Q的棋盘 [树形背包dp]

    4813: [Cqoi2017]小Q的棋盘 题意: 某poj弱化版?树形背包 据说还可以贪心... #include <iostream> #include <cstdio> ...

  6. 洛谷 P3698 [CQOI2017]小Q的棋盘 解题报告

    P3698 [CQOI2017]小Q的棋盘 题目描述 小 Q 正在设计一种棋类游戏. 在小 Q 设计的游戏中,棋子可以放在棋盘上的格点中.某些格点之间有连线,棋子只能在有连线的格点之间移动.整个棋盘上 ...

  7. BZOJ_4813_[Cqoi2017]小Q的棋盘_dfs

    BZOJ_4813_[Cqoi2017]小Q的棋盘_dfs Description 小Q正在设计一种棋类游戏.在小Q设计的游戏中,棋子可以放在棋盘上的格点中.某些格点之间有连线,棋子只能 在有连线的格 ...

  8. 小Q的棋盘 (贪心)

    小Q的棋盘 (贪心) 题目 洛谷传送门 做法 显然这是一棵树(这个就不多bb了,树的性质) 很容易发现一个性质,如果一条链走完,我们必须回头再走一次那条链(或一部分)才可以走到更多的点 所以为了减少这 ...

  9. 【bzoj4813】[Cqoi2017]小Q的棋盘 树上dfs+贪心

    题目描述 小Q正在设计一种棋类游戏.在小Q设计的游戏中,棋子可以放在棋盘上的格点中.某些格点之间有连线,棋子只能在有连线的格点之间移动.整个棋盘上共有V个格点,编号为0,1,2…,V-1,它们是连通的 ...

随机推荐

  1. Rabbitmq-topic演示

    在direct演示里,我们的日志系统实现了可选择性的接收日志.但仍旧有一些限制:不能基于多种标准进路由.在一个完整的日志系统中,我们可能不仅要根据日志的严重级别来接收日志,可能需要基于日志的来源来进行 ...

  2. 【SDOI2017】数字表格

    题面 题解 这道题目还有一种比较有意思的解法. 定义一种运算\((\mathbf f\oplus\mathbf g)(x) = \prod\limits_{d\mid x}\mathbf f(d)^{ ...

  3. 介绍HTTP协议的传输过程

    1.HTTP是面向事物的应用层协议,它使用TCP连接进行可靠传输,服务器默认监听在80端口 2.服务流程 从协议执行过程来说,当浏览器要访问www服务器时,首先要对服务器进行域名解析(DNS协议).一 ...

  4. 配置Nginx反向代理WebSocket,以代理noVNC为例

    什么是Nginx Nginx (engine x) 是一个高性能的HTTP和反向代理服务器,也是一个IMAP/POP3/SMTP服务器. Nginx是一款轻量级的Web 服务器/反向代理服务器及电子邮 ...

  5. MySQL主主同步配置

    1. MySQL主主配置过程 在上一篇实现了主从同步的基础上,进行主主同步的配置. 这里用node19(主),node20(从)做修改,使得node19和node20变为主主同步配置模式 修改配置文件 ...

  6. React16新特性

    React的16版本采用了MIT开源许可证,新增了一些特性. Error Boundary render方法新增返回类型 Portals 支持自定义DOM属性 setState传入null时不会再触发 ...

  7. Neo4j学习案例【转】

    转自 打怪的蚂蚁 CSDN: https://blog.csdn.net/xgjianstart/article/details/77285334 neo4j有社区版本和企业版.社区版本是免费的,只支 ...

  8. Linux recursively find files

    https://stackoverflow.com/questions/5905054/how-can-i-recursively-find-all-files-in-current-and-subf ...

  9. 在Windows下查看Java的JRE路径

    java -showversionecho %JAVA_HOME%path 这个方法可以确认当前java.exe的版本,但是并不能确定输出JRE的具体路径. JAVA_HOME的路径,也不一定就是当前 ...

  10. Activiti reassign task to another user

    //早先胡乱尝试的其他方法,可能对于以后深入学习Activiti有些用处. //taskService.delegateTask(taskId, receiveUserId); //taskServi ...