ADC裸机程序
硬件平台:JZ2440
实现功能:通过采集触摸屏ADC的电压值,推算触摸xy坐标
start.s
init.c
nand.c
interrupt.c
uart.c
uart.h
my_stdio.c
my_stdio.h
screen_touch.c
screen_touch.h
s3c24xx.h
main.c
start.s
.extern main interrupt_init adc_interrupt
.text
.global _start
_start: b Reset HandleUndef:
b HandleUndef HandleSWI:
b HandleSWI HandlePrefetchAbort:
b HandlePrefetchAbort HandleDataAbort:
b HandleDataAbort HandleNotUsed:
b HandleNotUsed b HandleIRQ HandleFIQ:
b HandleFIQ Reset:
ldr sp,=
bl watchdog_init
bl clock_init
bl nand_init
bl sdram_init ldr r0,=0x30000000
mov r1,#
mov r2,#(*)
bl nand_read msr cpsr_c,#0xd2
ldr sp,=0x31000000 msr cpsr_c,#0xdf
ldr sp,=0x34000000 ldr lr,=interrupt_return
ldr pc,=interrupt_init
interrupt_return:
msr cpsr_c,#0x5f ldr lr,=main_return
ldr pc,=main
main_return:
b main_return HandleIRQ:
sub lr,lr,#
stmdb sp!,{r0-r12,lr} ldr lr,=adc_return
ldr pc,=adc_interrupt
adc_return:
ldmia sp!,{r0-r12,pc}^
init.c
//watchdog
#define WTCON (*(volatile unsigned long *)0x53000000) //clock
#define LOCKTIME (*(volatile unsigned long *)0x4c000000)
#define MPLLCON (*(volatile unsigned long *)0x4c000004)
#define CLKDIVN (*(volatile unsigned long *)0x4c000014) //sdram
#define BWSCON (*(volatile unsigned long *)0x48000000)
#define BANKCON0 (*(volatile unsigned long *)0x48000004)
#define BANKCON1 (*(volatile unsigned long *)0x48000008)
#define BANKCON2 (*(volatile unsigned long *)0x4800000c)
#define BANKCON3 (*(volatile unsigned long *)0x48000010)
#define BANKCON4 (*(volatile unsigned long *)0x48000014)
#define BANKCON5 (*(volatile unsigned long *)0x48000018)
#define BANKCON6 (*(volatile unsigned long *)0x4800001c)
#define BANKCON7 (*(volatile unsigned long *)0x48000020)
#define REFRESH (*(volatile unsigned long *)0x48000024)
#define BANKSIZE (*(volatile unsigned long *)0x48000028)
#define MRSRB6 (*(volatile unsigned long *)0x4800002c)
#define MRSRB7 (*(volatile unsigned long *)0x48000030) void watchdog_init(void)
{
WTCON=;
} void clock_init(void)
{
CLKDIVN=0x03;
__asm__
(
"mrc p15,0,r1,c1,c0,0\n"
"orr r1,r1,#0xc0000000\n"
"mcr p15,0,r1,c1,c0,0\n"
);
MPLLCON=((0x5c<<)|(0x01<<)|(0x02));
} void sdram_init(void)
{
volatile unsigned long *sdram_base=(volatile unsigned long *)0x48000000;
sdram_base[] = 0x22011110;
sdram_base[] = 0x00000700;
sdram_base[] = 0x00000700;
sdram_base[] = 0x00000700;
sdram_base[] = 0x00000700;
sdram_base[] = 0x00000700;
sdram_base[] = 0x00000700;
sdram_base[] = 0x00018005;
sdram_base[] = 0x00018005;
sdram_base[] = 0x008C04F4;
sdram_base[] = 0x000000B1;
sdram_base[] = 0x00000030;
sdram_base[] = 0x00000030; }
nand.c
#define LARGER_NAND_PAGE #define GSTATUS1 (*(volatile unsigned int *)0x560000B0)
#define BUSY 1 #define NAND_SECTOR_SIZE 512
#define NAND_BLOCK_MASK (NAND_SECTOR_SIZE - 1) #define NAND_SECTOR_SIZE_LP 2048
#define NAND_BLOCK_MASK_LP (NAND_SECTOR_SIZE_LP - 1) typedef unsigned int S3C24X0_REG32; /* NAND FLASH (see S3C2410 manual chapter 6) */
typedef struct {
S3C24X0_REG32 NFCONF;
S3C24X0_REG32 NFCMD;
S3C24X0_REG32 NFADDR;
S3C24X0_REG32 NFDATA;
S3C24X0_REG32 NFSTAT;
S3C24X0_REG32 NFECC;
} S3C2410_NAND; /* NAND FLASH (see S3C2440 manual chapter 6, www.100ask.net) */
typedef struct {
S3C24X0_REG32 NFCONF;
S3C24X0_REG32 NFCONT;
S3C24X0_REG32 NFCMD;
S3C24X0_REG32 NFADDR;
S3C24X0_REG32 NFDATA;
S3C24X0_REG32 NFMECCD0;
S3C24X0_REG32 NFMECCD1;
S3C24X0_REG32 NFSECCD;
S3C24X0_REG32 NFSTAT;
S3C24X0_REG32 NFESTAT0;
S3C24X0_REG32 NFESTAT1;
S3C24X0_REG32 NFMECC0;
S3C24X0_REG32 NFMECC1;
S3C24X0_REG32 NFSECC;
S3C24X0_REG32 NFSBLK;
S3C24X0_REG32 NFEBLK;
} S3C2440_NAND; typedef struct {
void (*nand_reset)(void);
void (*wait_idle)(void);
void (*nand_select_chip)(void);
void (*nand_deselect_chip)(void);
void (*write_cmd)(int cmd);
void (*write_addr)(unsigned int addr);
unsigned char (*read_data)(void);
}t_nand_chip; static S3C2410_NAND * s3c2410nand = (S3C2410_NAND *)0x4e000000;
static S3C2440_NAND * s3c2440nand = (S3C2440_NAND *)0x4e000000; static t_nand_chip nand_chip; /* 供外部调用的函数 */
void nand_init(void);
void nand_read(unsigned char *buf, unsigned long start_addr, int size); /* NAND Flash操作的总入口, 它们将调用S3C2410或S3C2440的相应函数 */
static void nand_reset(void);
static void wait_idle(void);
static void nand_select_chip(void);
static void nand_deselect_chip(void);
static void write_cmd(int cmd);
static void write_addr(unsigned int addr);
static unsigned char read_data(void); /* S3C2410的NAND Flash处理函数 */
static void s3c2410_nand_reset(void);
static void s3c2410_wait_idle(void);
static void s3c2410_nand_select_chip(void);
static void s3c2410_nand_deselect_chip(void);
static void s3c2410_write_cmd(int cmd);
static void s3c2410_write_addr(unsigned int addr);
static unsigned char s3c2410_read_data(); /* S3C2440的NAND Flash处理函数 */
static void s3c2440_nand_reset(void);
static void s3c2440_wait_idle(void);
static void s3c2440_nand_select_chip(void);
static void s3c2440_nand_deselect_chip(void);
static void s3c2440_write_cmd(int cmd);
static void s3c2440_write_addr(unsigned int addr);
static unsigned char s3c2440_read_data(void); /* S3C2410的NAND Flash操作函数 */ /* 复位 */
static void s3c2410_nand_reset(void)
{
s3c2410_nand_select_chip();
s3c2410_write_cmd(0xff); // 复位命令
s3c2410_wait_idle();
s3c2410_nand_deselect_chip();
} /* 等待NAND Flash就绪 */
static void s3c2410_wait_idle(void)
{
int i;
volatile unsigned char *p = (volatile unsigned char *)&s3c2410nand->NFSTAT;
while(!(*p & BUSY))
for(i=; i<; i++);
} /* 发出片选信号 */
static void s3c2410_nand_select_chip(void)
{
int i;
s3c2410nand->NFCONF &= ~(<<);
for(i=; i<; i++);
} /* 取消片选信号 */
static void s3c2410_nand_deselect_chip(void)
{
s3c2410nand->NFCONF |= (<<);
} /* 发出命令 */
static void s3c2410_write_cmd(int cmd)
{
volatile unsigned char *p = (volatile unsigned char *)&s3c2410nand->NFCMD;
*p = cmd;
} /* 发出地址 */
static void s3c2410_write_addr(unsigned int addr)
{
int i;
volatile unsigned char *p = (volatile unsigned char *)&s3c2410nand->NFADDR; *p = addr & 0xff;
for(i=; i<; i++);
*p = (addr >> ) & 0xff;
for(i=; i<; i++);
*p = (addr >> ) & 0xff;
for(i=; i<; i++);
*p = (addr >> ) & 0xff;
for(i=; i<; i++);
} /* 读取数据 */
static unsigned char s3c2410_read_data(void)
{
volatile unsigned char *p = (volatile unsigned char *)&s3c2410nand->NFDATA;
return *p;
} /* S3C2440的NAND Flash操作函数 */ /* 复位 */
static void s3c2440_nand_reset(void)
{
s3c2440_nand_select_chip();
s3c2440_write_cmd(0xff); // 复位命令
s3c2440_wait_idle();
s3c2440_nand_deselect_chip();
} /* 等待NAND Flash就绪 */
static void s3c2440_wait_idle(void)
{
int i;
volatile unsigned char *p = (volatile unsigned char *)&s3c2440nand->NFSTAT;
while(!(*p & BUSY))
for(i=; i<; i++);
} /* 发出片选信号 */
static void s3c2440_nand_select_chip(void)
{
int i;
s3c2440nand->NFCONT &= ~(<<);
for(i=; i<; i++);
} /* 取消片选信号 */
static void s3c2440_nand_deselect_chip(void)
{
s3c2440nand->NFCONT |= (<<);
} /* 发出命令 */
static void s3c2440_write_cmd(int cmd)
{
volatile unsigned char *p = (volatile unsigned char *)&s3c2440nand->NFCMD;
*p = cmd;
} /* 发出地址 */
static void s3c2440_write_addr(unsigned int addr)
{
int i;
volatile unsigned char *p = (volatile unsigned char *)&s3c2440nand->NFADDR; *p = addr & 0xff;
for(i=; i<; i++);
*p = (addr >> ) & 0xff;
for(i=; i<; i++);
*p = (addr >> ) & 0xff;
for(i=; i<; i++);
*p = (addr >> ) & 0xff;
for(i=; i<; i++);
} static void s3c2440_write_addr_lp(unsigned int addr)
{
int i;
volatile unsigned char *p = (volatile unsigned char *)&s3c2440nand->NFADDR;
int col, page; col = addr & NAND_BLOCK_MASK_LP;
page = addr / NAND_SECTOR_SIZE_LP; *p = col & 0xff; /* Column Address A0~A7 */
for(i=; i<; i++);
*p = (col >> ) & 0x0f; /* Column Address A8~A11 */
for(i=; i<; i++);
*p = page & 0xff; /* Row Address A12~A19 */
for(i=; i<; i++);
*p = (page >> ) & 0xff; /* Row Address A20~A27 */
for(i=; i<; i++);
*p = (page >> ) & 0x03; /* Row Address A28~A29 */
for(i=; i<; i++);
} /* 读取数据 */
static unsigned char s3c2440_read_data(void)
{
volatile unsigned char *p = (volatile unsigned char *)&s3c2440nand->NFDATA;
return *p;
} /* 在第一次使用NAND Flash前,复位一下NAND Flash */
static void nand_reset(void)
{
nand_chip.nand_reset();
} static void wait_idle(void)
{
nand_chip.wait_idle();
} static void nand_select_chip(void)
{
int i;
nand_chip.nand_select_chip();
for(i=; i<; i++);
} static void nand_deselect_chip(void)
{
nand_chip.nand_deselect_chip();
} static void write_cmd(int cmd)
{
nand_chip.write_cmd(cmd);
}
static void write_addr(unsigned int addr)
{
nand_chip.write_addr(addr);
} static unsigned char read_data(void)
{
return nand_chip.read_data();
} /* 初始化NAND Flash */
void nand_init(void)
{
#define TACLS 0
#define TWRPH0 3
#define TWRPH1 0 /* 判断是S3C2410还是S3C2440 */
if ((GSTATUS1 == 0x32410000) || (GSTATUS1 == 0x32410002))
{
nand_chip.nand_reset = s3c2410_nand_reset;
nand_chip.wait_idle = s3c2410_wait_idle;
nand_chip.nand_select_chip = s3c2410_nand_select_chip;
nand_chip.nand_deselect_chip = s3c2410_nand_deselect_chip;
nand_chip.write_cmd = s3c2410_write_cmd;
nand_chip.write_addr = s3c2410_write_addr;
nand_chip.read_data = s3c2410_read_data; /* 使能NAND Flash控制器, 初始化ECC, 禁止片选, 设置时序 */
s3c2410nand->NFCONF = (<<)|(<<)|(<<)|(TACLS<<)|(TWRPH0<<)|(TWRPH1<<);
}
else
{
nand_chip.nand_reset = s3c2440_nand_reset;
nand_chip.wait_idle = s3c2440_wait_idle;
nand_chip.nand_select_chip = s3c2440_nand_select_chip;
nand_chip.nand_deselect_chip = s3c2440_nand_deselect_chip;
nand_chip.write_cmd = s3c2440_write_cmd;
#ifdef LARGER_NAND_PAGE
nand_chip.write_addr = s3c2440_write_addr_lp;
#else
nand_chip.write_addr = s3c2440_write_addr;
#endif
nand_chip.read_data = s3c2440_read_data; /* 设置时序 */
s3c2440nand->NFCONF = (TACLS<<)|(TWRPH0<<)|(TWRPH1<<);
/* 使能NAND Flash控制器, 初始化ECC, 禁止片选 */
s3c2440nand->NFCONT = (<<)|(<<)|(<<);
} /* 复位NAND Flash */
nand_reset();
} /* 读函数 */
void nand_read(unsigned char *buf, unsigned long start_addr, int size)
{
int i, j; #ifdef LARGER_NAND_PAGE
if ((start_addr & NAND_BLOCK_MASK_LP) || (size & NAND_BLOCK_MASK_LP)) {
return ; /* 地址或长度不对齐 */
}
#else
if ((start_addr & NAND_BLOCK_MASK) || (size & NAND_BLOCK_MASK)) {
return ; /* 地址或长度不对齐 */
}
#endif /* 选中芯片 */
nand_select_chip(); for(i=start_addr; i < (start_addr + size);) {
/* 发出READ0命令 */
write_cmd(); /* Write Address */
write_addr(i);
#ifdef LARGER_NAND_PAGE
write_cmd(0x30);
#endif
wait_idle(); #ifdef LARGER_NAND_PAGE
for(j=; j < NAND_SECTOR_SIZE_LP; j++, i++) {
#else
for(j=; j < NAND_SECTOR_SIZE; j++, i++) {
#endif
*buf = read_data();
buf++;
}
} /* 取消片选信号 */
nand_deselect_chip(); return ;
}
interrupt.c
#include"s3c24xx.h" void (*isr_handle_isr[])(void); void interrupt_init(void)
{
INTMOD=0x0;
INTMSK=0xffffffff;
} void adc_interrupt(void)
{
unsigned long offset=INTOFFSET; SRCPND=<<offset;
INTPND=INTPND;
isr_handle_isr[oft]();
}
uart.c
#include"uart.h" //uart
#define ULCON0 (*(volatile unsigned long *)0x50000000)
#define UCON0 (*(volatile unsigned long *)0x50000004)
#define UFCON0 (*(volatile unsigned long *)0x50000008)
#define UMCON0 (*(volatile unsigned long *)0x5000000c)
#define UTRSTAT0 (*(volatile unsigned long *)0x50000010)
#define UERSTAT0 (*(volatile unsigned long *)0x50000014)
#define UTXH0 (*(volatile unsigned char *)0x50000020)
#define URXH0 (*(volatile unsigned char *)0x50000024)
#define UBRDIV0 (*(volatile unsigned long *)0x50000028) //GPH
#define GPHCON (*(volatile unsigned long *)0x56000070)
#define GPHDAT (*(volatile unsigned long *)0x56000074)
#define GPHUP (*(volatile unsigned long *)0x56000078) void uart0_init(void)
{
GPHCON|=0xa0;
GPHUP=0x0c; ULCON0=0x03;
UCON0=0x05;
UFCON0=0x00;
UMCON0=0x00;
UBRDIV0=((/(*))-);
} unsigned char my_getchar(void)
{
while(!(UTRSTAT0 & 0x01));
return URXH0;
} void my_putchar(unsigned char date)
{
while(!(UTRSTAT0 & 0x02));
UTXH0=date;
} unsigned char getc(void)
{
while(!(UTRSTAT0 & 0x01));
return URXH0;
} void putc(unsigned char c)
{
while(!(UTRSTAT0 & 0x02));
UTXH0=c;
}
uart.h
#ifndef _UART_H_
#define _UART_H_ void uart0_init(void);
unsigned char my_getchar(void);
void my_putchar(unsigned char date); unsigned char getc(void);
void putc(unsigned char c); #endif
my_stdio.c
#include"uart.h"
#include"my_stdio.h" typedef char* va_list; #define int_sizeof(type) ((sizeof(int)+sizeof(type)-1)&~(sizeof(int)-1)) #define va_start(para_p,first_para) (para_p=(va_list)&first_para+int_sizeof(first_para))
#define va_arg(para_p,type) (*(type *)((para_p+=int_sizeof(type))-int_sizeof(type)))
#define va_end(para_p) (para_p=(va_list)0) void my_printf(const char *format, ...)
{
va_list temp ;
char *string = format;
va_start(temp, format); while (*string)
{
if (*string == '%')
{
switch (*++string)
{
case 'c': { my_putchar(va_arg(temp,char)); break; }
case 's':
{
char* p = va_arg(temp,char*);
while (*p != ) my_putchar(*p++);
break;
} case 'p':
{
unsigned int addr = (unsigned int)&va_arg(temp, unsigned int), sheft = 0xf0000000;
unsigned char temp = ,count=;
my_putchar('');
my_putchar('x');
while (count<)
{
temp = (unsigned char)(((sheft >> count)&addr) >> ( - count - )) ;
if (temp < ) my_putchar(temp + );
if (temp >= ) my_putchar(temp+-);
count += ;
}
break;
} case 'd':
{
int value = va_arg(temp, int),num=;
if (value == ) my_putchar();
if (value & 0x80000000) //负数
{
my_putchar('-');
num = -;
}
else //正数.;
while (!(value / num))
{
num /= ;
if (num == )
{
my_putchar();
return;
}
}
while (num != )
{
my_putchar(value / num+);
value %= num;
num /= ;
}
break;
} case 'f':
{
char *str = "Sorry: function is not available";
while (*str != ) my_putchar(*str++);
} default: break;
}
}
string++;
}
va_end(temp);
}
my_stdio.h
#ifndef _OWN_STDIO_H_
#define _OWN_STDIO_H_ void my_printf(const char *format,...); #endif
screen_touch.c
#include"s3c24xx.h"
#include"stdio.h" // ADCCON寄存器
#define PRESCALE_DIS (0 << 14)
#define PRESCALE_EN (1 << 14)
#define PRSCVL(x) ((x) << 6)
#define ADC_INPUT(x) ((x) << 3)
#define ADC_START (1 << 0)
#define ADC_ENDCVT (1 << 15) // ADCTSC寄存器
#define UD_SEN (1 << 8)
#define DOWN_INT (UD_SEN*0)
#define UP_INT (UD_SEN*1)
#define YM_SEN (1 << 7)
#define YM_HIZ (YM_SEN*0)
#define YM_GND (YM_SEN*1)
#define YP_SEN (1 << 6)
#define YP_EXTVLT (YP_SEN*0)
#define YP_AIN (YP_SEN*1)
#define XM_SEN (1 << 5)
#define XM_HIZ (XM_SEN*0)
#define XM_GND (XM_SEN*1)
#define XP_SEN (1 << 4)
#define XP_EXTVLT (XP_SEN*0)
#define XP_AIN (XP_SEN*1)
#define XP_PULL_UP (1 << 3)
#define XP_PULL_UP_EN (XP_PULL_UP*0)
#define XP_PULL_UP_DIS (XP_PULL_UP*1)
#define AUTO_PST (1 << 2)
#define CONVERT_MAN (AUTO_PST*0)
#define CONVERT_AUTO (AUTO_PST*1)
#define XP_PST(x) (x << 0) #define NOP_MODE 0
#define X_AXIS_MODE 1
#define Y_AXIS_MODE 2
#define WAIT_INT_MODE 3 #define wait_down_int() { ADCTSC = DOWN_INT | XP_PULL_UP_EN | \
XP_AIN | XM_HIZ | YP_AIN | YM_GND | \
XP_PST(WAIT_INT_MODE); } #define wait_up_int() { ADCTSC = UP_INT | XP_PULL_UP_EN | XP_AIN | XM_HIZ | \
YP_AIN | YM_GND | XP_PST(WAIT_INT_MODE); } #define mode_auto_xy() { ADCTSC = CONVERT_AUTO | XP_PULL_UP_DIS | XP_PST(NOP_MODE); } extern void (*isr_handle_array[])(void); static void screen_touch_interrupt(void)
{ printf("xdata = %4d, ydata = %4d\r\n", (int)(ADCDAT0 & 0x3ff), (int)(ADCDAT1 & 0x3ff));
wait_up_int();
SUBSRCPND |= BIT_SUB_ADC;
SRCPND |= BIT_ADC;
INTPND |= BIT_ADC;
} void screen_touch(void)
{
isr_handle_isr[ISR_ADC_OFT]=screen_touch_interrupt;
INTMSK &= ~BIT_ADC;
INTSUBMSK &= ~(BIT_SUB_TC);
INTSUBMSK &= ~(BIT_SUB_ADC);
ADCCON = PRESCALE_EN | PRSCVL();
ADCDLY = ;
wait_down_int();
INTSUBMSK |= BIT_SUB_TC;
INTSUBMSK |= BIT_SUB_ADC;
INTMSK |= BIT_ADC; }
screen_touch.h
#ifndef _SCREEN_TOUCH_H_
#define _SCREEN_TOUCH_H_ void screen_touch(void); #endif
s3c24xx.h
/* WOTCH DOG register */
#define WTCON (*(volatile unsigned long *)0x53000000)
#define WTDAT (*(volatile unsigned long *)0x53000004)
#define WTCNT (*(volatile unsigned long *)0x53000008) /* SDRAM regisers */
#define MEM_CTL_BASE 0x48000000
#define SDRAM_BASE 0x30000000 /* GPIO registers */
#define GPACON (*(volatile unsigned long *)0x56000000)
#define GPADAT (*(volatile unsigned long *)0x56000004) #define GPBCON (*(volatile unsigned long *)0x56000010)
#define GPBDAT (*(volatile unsigned long *)0x56000014)
#define GPBUP (*(volatile unsigned long *)0x56000018) #define GPCCON (*(volatile unsigned long *)0x56000020)
#define GPCDAT (*(volatile unsigned long *)0x56000024)
#define GPCUP (*(volatile unsigned long *)0x56000028) #define GPDCON (*(volatile unsigned long *)0x56000030)
#define GPDDAT (*(volatile unsigned long *)0x56000034)
#define GPDUP (*(volatile unsigned long *)0x56000038) #define GPECON (*(volatile unsigned long *)0x56000040)
#define GPEDAT (*(volatile unsigned long *)0x56000044)
#define GPEUP (*(volatile unsigned long *)0x56000048) #define GPFCON (*(volatile unsigned long *)0x56000050)
#define GPFDAT (*(volatile unsigned long *)0x56000054)
#define GPFUP (*(volatile unsigned long *)0x56000058) #define GPGCON (*(volatile unsigned long *)0x56000060)
#define GPGDAT (*(volatile unsigned long *)0x56000064)
#define GPGUP (*(volatile unsigned long *)0x56000068) #define GPHCON (*(volatile unsigned long *)0x56000070)
#define GPHDAT (*(volatile unsigned long *)0x56000074)
#define GPHUP (*(volatile unsigned long *)0x56000078) // ADC
#define ADCCON (*(volatile unsigned long *)0x58000000) //ADC control
#define ADCTSC (*(volatile unsigned long *)0x58000004) //ADC touch screen control
#define ADCDLY (*(volatile unsigned long *)0x58000008) //ADC start or Interval Delay
#define ADCDAT0 (*(volatile unsigned long *)0x5800000c) //ADC conversion data 0
#define ADCDAT1 (*(volatile unsigned long *)0x58000010) //ADC conversion data 1
#define ADCUPDN (*(volatile unsigned long *)0x58000014) //Stylus Up/Down interrupt status /*UART registers*/
#define ULCON0 (*(volatile unsigned long *)0x50000000)
#define UCON0 (*(volatile unsigned long *)0x50000004)
#define UFCON0 (*(volatile unsigned long *)0x50000008)
#define UMCON0 (*(volatile unsigned long *)0x5000000c)
#define UTRSTAT0 (*(volatile unsigned long *)0x50000010)
#define UTXH0 (*(volatile unsigned char *)0x50000020)
#define URXH0 (*(volatile unsigned char *)0x50000024)
#define UBRDIV0 (*(volatile unsigned long *)0x50000028) /*interrupt registes*/
#define SRCPND (*(volatile unsigned long *)0x4A000000)
#define INTMOD (*(volatile unsigned long *)0x4A000004)
#define INTMSK (*(volatile unsigned long *)0x4A000008)
#define PRIORITY (*(volatile unsigned long *)0x4A00000c)
#define INTPND (*(volatile unsigned long *)0x4A000010)
#define INTOFFSET (*(volatile unsigned long *)0x4A000014)
#define SUBSRCPND (*(volatile unsigned long *)0x4A000018)
#define INTSUBMSK (*(volatile unsigned long *)0x4A00001c) /*external interrupt registers*/
#define EINTMASK (*(volatile unsigned long *)0x560000a4)
#define EINTPEND (*(volatile unsigned long *)0x560000a8) /*clock registers*/
#define LOCKTIME (*(volatile unsigned long *)0x4c000000)
#define MPLLCON (*(volatile unsigned long *)0x4c000004)
#define UPLLCON (*(volatile unsigned long *)0x4c000008)
#define CLKCON (*(volatile unsigned long *)0x4c00000c)
#define CLKSLOW (*(volatile unsigned long *)0x4c000010)
#define CLKDIVN (*(volatile unsigned long *)0x4c000014) /*PWM & Timer registers*/
#define TCFG0 (*(volatile unsigned long *)0x51000000)
#define TCFG1 (*(volatile unsigned long *)0x51000004)
#define TCON (*(volatile unsigned long *)0x51000008)
#define TCNTB0 (*(volatile unsigned long *)0x5100000c)
#define TCMPB0 (*(volatile unsigned long *)0x51000010)
#define TCNTO0 (*(volatile unsigned long *)0x51000014) /* I2C registers */
#define IICCON (*(volatile unsigned char *)0x54000000) // IIC control
#define IICSTAT (*(volatile unsigned char *)0x54000004) // IIC status
#define IICADD (*(volatile unsigned char *)0x54000008) // IIC address
#define IICDS (*(volatile unsigned char *)0x5400000c) // IIC data shift // LCD CONTROLLER
#define LCDCON1 (*(volatile unsigned long *)0x4d000000) //LCD control 1
#define LCDCON2 (*(volatile unsigned long *)0x4d000004) //LCD control 2
#define LCDCON3 (*(volatile unsigned long *)0x4d000008) //LCD control 3
#define LCDCON4 (*(volatile unsigned long *)0x4d00000c) //LCD control 4
#define LCDCON5 (*(volatile unsigned long *)0x4d000010) //LCD control 5
#define LCDSADDR1 (*(volatile unsigned long *)0x4d000014) //STN/TFT Frame buffer start address 1
#define LCDSADDR2 (*(volatile unsigned long *)0x4d000018) //STN/TFT Frame buffer start address 2
#define LCDSADDR3 (*(volatile unsigned long *)0x4d00001c) //STN/TFT Virtual screen address set
#define REDLUT (*(volatile unsigned long *)0x4d000020) //STN Red lookup table
#define GREENLUT (*(volatile unsigned long *)0x4d000024) //STN Green lookup table
#define BLUELUT (*(volatile unsigned long *)0x4d000028) //STN Blue lookup table
#define DITHMODE (*(volatile unsigned long *)0x4d00004c) //STN Dithering mode
#define TPAL (*(volatile unsigned long *)0x4d000050) //TFT Temporary palette
#define LCDINTPND (*(volatile unsigned long *)0x4d000054) //LCD Interrupt pending
#define LCDSRCPND (*(volatile unsigned long *)0x4d000058) //LCD Interrupt source
#define LCDINTMSK (*(volatile unsigned long *)0x4d00005c) //LCD Interrupt mask
#define LPCSEL (*(volatile unsigned long *)0x4d000060) //LPC3600 Control
#define PALETTE 0x4d000400 //Palette start address #define ISR_EINT0_OFT 0
#define ISR_EINT1_OFT 1
#define ISR_EINT2_OFT 2
#define ISR_EINT3_OFT 3
#define ISR_EINT4_7_OFT 4
#define ISR_EINT8_23_OFT 5
#define ISR_NOTUSED6_OFT 6
#define ISR_BAT_FLT_OFT 7
#define ISR_TICK_OFT 8
#define ISR_WDT_OFT 9
#define ISR_TIMER0_OFT 10
#define ISR_TIMER1_OFT 11
#define ISR_TIMER2_OFT 12
#define ISR_TIMER3_OFT 13
#define ISR_TIMER4_OFT 14
#define ISR_UART2_OFT 15
#define ISR_LCD_OFT 16
#define ISR_DMA0_OFT 17
#define ISR_DMA1_OFT 18
#define ISR_DMA2_OFT 19
#define ISR_DMA3_OFT 20
#define ISR_SDI_OFT 21
#define ISR_SPI0_OFT 22
#define ISR_UART1_OFT 23
#define ISR_NOTUSED24_OFT 24
#define ISR_USBD_OFT 25
#define ISR_USBH_OFT 26
#define ISR_IIC_OFT 27
#define ISR_UART0_OFT 28
#define ISR_SPI1_OFT 29
#define ISR_RTC_OFT 30
#define ISR_ADC_OFT 31 // PENDING BIT
#define BIT_EINT0 (0x1)
#define BIT_EINT1 (0x1<<1)
#define BIT_EINT2 (0x1<<2)
#define BIT_EINT3 (0x1<<3)
#define BIT_EINT4_7 (0x1<<4)
#define BIT_EINT8_23 (0x1<<5)
#define BIT_CAM (0x1<<6) // Added for 2440.
#define BIT_BAT_FLT (0x1<<7)
#define BIT_TICK (0x1<<8)
#define BIT_WDT_AC97 (0x1<<9)
#define BIT_TIMER0 (0x1<<10)
#define BIT_TIMER1 (0x1<<11)
#define BIT_TIMER2 (0x1<<12)
#define BIT_TIMER3 (0x1<<13)
#define BIT_TIMER4 (0x1<<14)
#define BIT_UART2 (0x1<<15)
#define BIT_LCD (0x1<<16)
#define BIT_DMA0 (0x1<<17)
#define BIT_DMA1 (0x1<<18)
#define BIT_DMA2 (0x1<<19)
#define BIT_DMA3 (0x1<<20)
#define BIT_SDI (0x1<<21)
#define BIT_SPI0 (0x1<<22)
#define BIT_UART1 (0x1<<23)
#define BIT_NFCON (0x1<<24) // Added for 2440.
#define BIT_USBD (0x1<<25)
#define BIT_USBH (0x1<<26)
#define BIT_IIC (0x1<<27)
#define BIT_UART0 (0x1<<28)
#define BIT_SPI1 (0x1<<29)
#define BIT_RTC (0x1<<30)
#define BIT_ADC (0x1<<31)
#define BIT_ALLMSK (0xffffffff) #define BIT_SUB_ALLMSK (0x7fff)
#define BIT_SUB_AC97 (0x1<<14)
#define BIT_SUB_WDT (0x1<<13)
#define BIT_SUB_CAM_S (0x1<<12) // Added for 2440.
#define BIT_SUB_CAM_C (0x1<<11) // Added for 2440.
#define BIT_SUB_ADC (0x1<<10)
#define BIT_SUB_TC (0x1<<9)
#define BIT_SUB_ERR2 (0x1<<8)
#define BIT_SUB_TXD2 (0x1<<7)
#define BIT_SUB_RXD2 (0x1<<6)
#define BIT_SUB_ERR1 (0x1<<5)
#define BIT_SUB_TXD1 (0x1<<4)
#define BIT_SUB_RXD1 (0x1<<3)
#define BIT_SUB_ERR0 (0x1<<2)
#define BIT_SUB_TXD0 (0x1<<1)
#define BIT_SUB_RXD0 (0x1<<0) #define GSTATUS1 (*(volatile unsigned long *)0x560000B0)
main.c
#include"uart.h"
#include"my_stdio.h"
#include"screen_touch.h" void raise(int sig_nr){;} int main(void)
{
uart0_init();
while()
screen_touch();
return ;
}
uart.lds
SECTIONS
{
. = 0x00000000;
.init : AT(){start.o init.o nand.o}
. = 0x30000000;
.text : AT(){*(.text)}
.rodata ALIGN() : AT((LOADADDR(.text)+SIZEOF(.text)+)&~(0x03)) {*(.rodata*)}
.data ALIGN() : AT((LOADADDR(.rodata)+SIZEOF(.rodata)+)&~(0x03)) {*(.data)}
.bss : {*(.bss) *(COMMON)}
}
Makefile:
objs:= start.o init.o uart.o nand.o main.o my_stdio.o scrennt_touch.o interrupt.o lib/libc.a CC =arm-linux-gcc
LD =arm-linux-ld
AR =arm-linux-ar
OBJCOPY =arm-linux-objcopy
OBJDUMP =arm-linux-objdump INCLUDEDIR :=$(shell pwd)/include
CFLAGS :=-Wall -O2
CPPFLAGS :=-nostdinc -I$(INCLUDEDIR) export CC LD OBJCOPY OBJDUMP INCLUDEDIR CFLAGS CPPFLAGS uart.bin:$(objs)
arm-linux-ld -Tuart.lds -o uart_elf $^ libgcc.a
arm-linux-objcopy -O binary -S uart_elf $@
arm-linux-objdump -D -m arm uart_elf > uart.dis .PHONY:lib/libc.a
lib/libc.a:
cd lib;make;cd .. %.o:%.s
$(CC) $(CPPFLAGS) $(FLAGS)-o $@ -c $< %.o:%.c
$(CC) $(CPPFLAGS) $(FLAGS) -o $@ -c $< clean:
make clean -C lib
rm -f *.o *.bin *.dis uart_elf
ADC裸机程序的更多相关文章
- 基于KEIL4开发ARM9(S3C2440)的裸机程序
本文主要介绍如何使用Keil4开发ARM9(S3C2440)裸机程序. 说明: 一.平台: 操作系统:Windows XP系统 KEIL版本:4.73 开发板:ARM9(S3C2440) 二.建立工程 ...
- ubuntu15.10跑裸机程序跑.bin文件
1:安装tftp:#apt-get update#apt-get install tftp-hpa tftpd-hpa xinetd2:#cd /srv#mkdir tftp#chmod 777 tf ...
- EB-SAM9G45裸机程序下载方法
开发板:EB-SAM9G45 这里提供一种裸程序下载的方法. 在官方提供的下载方法中有手动下载和自动下载,它们都离不开SAM-BA软件,而该软件使用比较麻烦,而且操作不当很容易导致电脑蓝屏,还有一个很 ...
- s3c2440 lcd 显示图片裸机程序
因为前面的裸机程序非常的简单,就不写博了. 程序的流程: 1,初始化C SP 2,关看门狗 3,初始化SDRAM 4,读出 NAND FLASH 中的 包含图片的程式放到SDRAM里面 5,跳转到SD ...
- ARM入门实践(一)----Mini6410上最简单的LED点灯裸机程序
Mini6410上最简单的LED点灯裸机程序 : 实验环境: 根据友善教程,要用ADS,据说现在都不用这个了,但是为了打开友善给的mcp工程,就下了一个,Win7下弄上兼容模式和管理员权限,再下一个S ...
- 松瀚SN8P2711 2722 ADC初始化程序及应用--汇编源码
/* 松瀚 SN8P2711 2722 ADC初始化程序 及应用实例 */ INIT_ADC: MOV A, #0XB2 // 启动ADC电路 使能AIN通道 B0MOV ADM, A MOV A,# ...
- JZ2440学习笔记之第一个裸机程序(Keil-MDK)
CPU:S3C2440, ARM920T, Internal 4KB RAM, Support boot from NAND flash, 128MB for each bank. JZ2440:Me ...
- freeRTOS与裸机程序相比有什么区别??
FreeRTOS命名及变量规则 初学FreeRTOS的用户对其变量和函数的命名比较迷惑, FreeRTOS的核心源代码遵从MISRA编码标准指南,关于MISRA编码标准,可以查看文章https: ...
- MDK972-EK开发板裸调试设置和裸机程序烧写(转)
硬件平台:MDK972-EK开发板编译调试软件:KEIL uVision4仿真工具:JLINK V7/V8 本例子从串口输出信息,如图: KEIL uVision4调试设置如图所示: ...
随机推荐
- centos7磁盘挂载及取消
磁盘挂载查看已经挂载磁盘数 cat /proc/scsi/scsi | grep HostHost: scsi1 Channel: 00 Id: 00 Lun: 00Host: scsi2 Chann ...
- Linux配置定时,使用 crontab -e 与 直接编辑 /etc/crontab 的区别
转自:http://blog.csdn.net/catoop/article/details/41821395 版权声明:本文为博主原创文章,未经博主允许不得转载. Linux配置定时任务,大家都知道 ...
- phpstudy 升级(更换) mysql 版本
原文链接:http://phpstudy.php.cn/jishu-php-3131.html 一.下载新版 mysql 例如 mysql5.7: https://dev.mysql.com/down ...
- 9. Oracle DataGuard的介绍
一. Oracle DataGuard简介 Oracle DataGuard:简称DG.是由一个Primary Database(主库)和一个或者多个Standby Database(备库)组成.对O ...
- iOS - 国内注册境外 Apple id 账号
注册前准备工作 需要手头MAC一台 AppStore下载VPN Plus FQ到美国(ipip.net 查看当前ip 是否是在境外 当前ip 在境外才可以哦) 动手搞起来 https://applei ...
- 【Py-Github】根据条件筛选Github repo的例子
条件: language:python commits:>100 contributors:>2 stars:>5 fork:0 实现: from github import Git ...
- java基础---->String中的split方法的原理
这里面主要介绍一下关于String类中的split方法的使用以及原理. split函数的说明 split函数java docs的说明: When there is a positive-width m ...
- spark连数据库
DataFrame提供了一条联结所有主流数据源并自动转化为可并行处理格式的渠道,通过它Spark能取悦大数据生态链上的所有玩家,无论是善用R的数据科学家,惯用SQL的商业分析师,还是在意效率和实时性的 ...
- 新Windows本地提权漏洞学习(CVE-2019-0841)
1.这是一个啥漏洞? 睁眼一看,妈呀本地提权,快加入本地提权漏洞利用包里,速度加入.github连接我就不发了.担心被认为是传播黑客工具,咱们在这里单纯学习一下漏洞的原理和部分源代码. 2.文件读写权 ...
- 腾讯地图打开地图选取位置 withMap
https://lbs.qq.com/tool/component-picker.html withMap import React, { Component } from "react&q ...