【LGP5176】公约数
老年选手啥都不想推只能搞个杜教筛了
这个式子长得好吓人啊,所以我们唯一分解之后来考虑这道题
设\(i,j,k\)分别是\(p^a,p^b,p^c\),至于到底谁是谁并不重要,我们不妨假设\(a\leq b\leq c\)
那么\(gcd(i\times j,j\times k,k\times i)=min\{p^{a+b},p^{a+c},p^{b+c}\}=p^{a+b}\)
\(gcd(i,j,k)=min\{p^a,p^b,p^c\}=p^a\)
也就是前面两个柿子乘起来是\(p^{2a+b}\)
我们把后面的柿子分母通分
\]
我们发现分母上还是等于\(p^{2a+b}\),因为\(p^a\)跟另外两个组合得到的\(gcd\)都是\(p^a\),\(p^b\)和\(p^{c}\)的\(gcd\)是\(p^b\),所以分母上是\(p^{2a+b}\)
和外面一约分,没了
显然唯一分解之后各个质数次幂是相互独立的,于是我们现在可以得出结论,我们要求的就是
\]
显然可以拆成
\]
套路反演我们可以得到我们要求的东西实际上是
\]
后面的东西线筛也很好推,但是老年选手并不想动脑子了
发现后面的柿子是\(id^2\times \mu\),我们直接杜教筛卷上\(1\)就变成\(id^2\)了,\(id^2\)的前缀和自然是\(\frac{n(n+1)(2n+1)}{6}\)了
这样是\(O(n^{\frac{3}{4}})\)的,但是我们暴力调合级数处理一些,就能跑的很快了
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define re register
#define LL long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
inline int read() {
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
int T;
const int I6=166666668;
const int mod=1e9+7;
const int maxn=1e6+1;
int p[maxn>>1],is[maxn],mu[maxn];
int f[20000005],vis[20000005];
inline int calc(int x) {return 1ll*x*(x+1)%mod*(x+x+1)%mod*I6%mod;}
inline int solve(int x) {
if(vis[x]) return f[x];
vis[x]=1;int ans=calc(x);
for(re int l=2,r;l<=x;l=r+1) {
r=x/(x/l);
ans=(ans-1ll*solve(x/l)*(r-l+1)%mod+mod)%mod;
}
return f[x]=ans;
}
inline int work(int n,int m) {
if(n>m) std::swap(n,m);
int ans=0;
for(re int l=1,r;l<=n;l=r+1) {
r=min(n/(n/l),m/(m/l));
ans=(ans+1ll*(n/l)*(m/l)%mod*(solve(r)-solve(l-1)+mod)%mod)%mod;
}
return ans;
}
int main() {
T=read();is[1]=mu[1]=1;
for(re int i=2;i<maxn;i++) {
if(!is[i]) p[++p[0]]=i,mu[i]=-1;
for(re int j=1;j<=p[0]&&p[j]*i<maxn;j++) {
is[p[j]*i]=1;if(i%p[j]==0) break;mu[p[j]*i]=-1*mu[i];
}
}
for(re int i=1;i<maxn;i++)
for(re int j=i;j<maxn;j+=i) {
if(!mu[j/i]) continue;
if(mu[j/i]<0) f[j]=(f[j]-1ll*i*i%mod+mod)%mod;
else f[j]=(f[j]+1ll*i*i)%mod;
}
for(re int i=1;i<maxn;i++)
vis[i]=1,f[i]=(f[i]+f[i-1])%mod;
while(T--) {
int n=read(),m=read(),p=read();
int tmp=1ll*work(n,m)*p%mod+1ll*work(m,p)*n%mod;tmp%=mod;
tmp=(tmp+1ll*work(n,p)*m%mod)%mod;
printf("%d\n",tmp%mod);
}
}
【LGP5176】公约数的更多相关文章
- C语言辗转相除法求2个数的最小公约数
辗转相除法最大的用途就是用来求两个数的最大公约数. 用(a,b)来表示a和b的最大公约数. 有定理: 已知a,b,c为正整数,若a除以b余c,则(a,b)=(b,c). (证明过程请参考其它资料) 例 ...
- 求两个数字的最大公约数-Python实现,三种方法效率比较,包含质数打印质数的方法
今天面试,遇到面试官询求最大公约数.小学就学过的奥数题,居然忘了!只好回答分解质因数再求解! 回来果断复习下,常用方法辗转相除法和更相减损法,小学奥数都学过,很简单,就不细说了,忘了的话可以百度:ht ...
- BZOJ4488: [Jsoi2015]最大公约数
Description 给定一个长度为 N 的正整数序列Ai对于其任意一个连续的子序列{Al,Al+1...Ar},我们定义其权值W(L,R )为其长度与序列中所有元素的最大公约数的乘积,即W(L,R ...
- 求N个数的最大公约数和最小公倍数(转)
除了分解质因数,还有另一种适用于求几个较小数的最大公约数.最小公倍数的方法 下面是数学证明及算法实现 令[a1,a2,..,an] 表示a1,a2,..,an的最小公倍数,(a1,a2,..,an)表 ...
- 辗转相除法求最大公约数,非goto
#include<iostream> using namespace std; //不推荐用goto,当然用它更快 //辗转相除法求两数的最大公约数 int gcd(long int a, ...
- ZOJ Problem Set - 1337 Pi 最大公约数
这道题目的关键在于怎么求两个整数的最大公约数,这里正好复习一下以前的知识,如下: 1.设整数a和b 2.如果a和b都为0,则二者的最大公约数不存在 3.如果a或b等于0,则二者的最大公约数为非0的一个 ...
- Euclid求最大公约数
Euclid求最大公约数算法 #include <stdio.h> int gcd(int x,int y){ while(x!=y){ if(x>y) x=x-y; else y= ...
- 洛谷P1372 又是毕业季I&&P1414 又是毕业季II[最大公约数]
P1372 又是毕业季I 题目背景 “叮铃铃铃”,随着高考最后一科结考铃声的敲响,三年青春时光顿时凝固于此刻.毕业的欣喜怎敌那离别的不舍,憧憬着未来仍毋忘逝去的歌.1000多个日夜的欢笑和泪水,全凝聚 ...
- Java程序设计之最大公约数和最小公倍数
题目:输入两个正整数number1和number2,求其最大公约数和最小公倍数. 算法:较大数和较小数取余,较小数除余数,一直到余数为0时,为最大公约数(辗转相除法):最大公倍数numbe1*numb ...
随机推荐
- JavaWeb学习 (二十)————JavaWeb的两种开发模式
一.JSP+JavaBean开发模式 1.1.jsp+javabean开发模式架构 jsp+javabean开发模式的架构图如下图(图1-1)所示
- [转]VS Code 扩展 Angular 6 Snippets - TypeScript, Html, Angular Material, ngRx, RxJS & Flex Layout
本文转自:https://marketplace.visualstudio.com/items?itemName=Mikael.Angular-BeastCode VSCode Angular Typ ...
- 【Redis】3、Redis集群部署
Redis 集群是一个提供在多个Redis间节点间共享数据的程序集. Redis集群并不支持处理多个keys的命令,因为这需要在不同的节点间移动数据,从而达不到像Redis那样的性能,在高负载的情况下 ...
- 设计模式之模板方法模式(TemplateMethod)
模板方法模式使用继承来实现模式的功能,在基类使用一个方法来定义算法的各个步骤,这些步骤(方法)的具体实现会放到子类中,通过这样来实现不同算法对象的算法拼合,完成该对象整体算法的实现. 作用 模板方法中 ...
- Java 10新特性
ref:http://www.cocoachina.com/industry/20180309/22520.html https://www.oschina.net/news/94402/java-1 ...
- CSS中你知道的display的值有多少?用了多少?
它的语法如下: display:none | inline | block | list-item | inline-block | table | inline-table | table-capt ...
- [VUE ERROR] Error in render: "TypeError: Cannot create property 'header' on boolean 'true'"
项目基于ElemnetUi进行的开发,在引入第三方扩展库 vue-element-extends 之后使用它的表格组件报了这个错 解决方案: 1. 删除项目中的 node_modules 2. 删除 ...
- http请求之get和post的区别
前言:大家现在度娘一下,查得最多的区别,可能就是: “Get把参数写在URL中,Post通过请求体来传参的” “GET没有POST安全,因为Get参数直接显示在URL上” “Get请求在URL中传送的 ...
- 安卓开发_深入理解Handler消息传递机制
一.概述 因为子线程的run()方法无法修改UI线程(主线程)的UI界面,所以Android引入了Handler消息传递机制,实现在新创建的线程中操作UI界面 二.消息类(Message) 消息类是存 ...
- 安卓开发_浅谈DatePicker(日期选择器)
DatePicker继承自FrameLayout类,日期选择控件的主要功能是向用户提供包含年.月.日的日期数据并允许用户对其修改.如果要捕获用户修改日期选择控件中的数据事件,需要为DatePicker ...