E - The Balance POJ - 2142 (欧几里德)
题意:有两种砝码m1, m2和一个物体G,m1的个数x1, m2的个数为x2, 问令x1+x2最小,并且将天平保持平衡 !输出 x1 和 x2

题解:这是欧几里德拓展的一个应用,欧几里德求不定方程ax+by=c:
先介绍一下:
1. ax+by=gcd(a, b) 相当于a,b互素。则同过欧几里德拓展,有整数解x, y
2.对于 ax+by=c 则转化为 两边同时除以c 再乘以 gcd(a/c, b/c) 这样就化成了 1结论!
3.求一个x的最小值为 x=x*c/gcd(a, b); 为了保证为正数, x=(x%(b/gcd(a, b))+b/gcd(a, b))%(b/gcd(a, b));
4.注意:x和y的地位相同的!注意:要他们的代表意义!
思路:
已知推出公式 m1x+m2y=C 由欧几里德拓展 求出 x, y
然后求出最小的x1 ,然后根据方程 解出 y1=(C- m1x1)/m2;
同理求出最小的y2 ,根据方程求出 x2 如果为负数就化为正数
ac代码:
#include<cstdio>
#define ll long long void exgcd(ll a, ll b, ll &d, ll &x, ll &y)
{
if (!b){ d = a; x = ; y = ; }
else{ exgcd(b, a%b, d, y, x); y -= x*(a / b); }
}
int main()
{
ll A, B, C;
while (scanf("%lld%lld%lld", &A, &B, &C) != EOF && (A || B || C)){
ll x, y, g;
exgcd(A, B, g, x, y);
ll x1 = x*C / g;
x1 = (x1 % (B / g) + (B / g)) % (B / g);
ll y1 = (C - A*x1) / B; if (y1 < )y1 = -y1; ll y2 = y*C / g;
y2 = (y2 % (A / g) + (A / g)) % (A / g);
ll x2 = (C - B*y2) / A; if (x2 < )x2 = -x2;
if (x1 + y1 < x2 + y2)
{
printf("%lld %lld\n", x1, y1);
}
else
{
printf("%lld %lld\n", x2, y2);
}
}
}
E - The Balance POJ - 2142 (欧几里德)的更多相关文章
- The Balance POJ 2142 扩展欧几里得
Description Ms. Iyo Kiffa-Australis has a balance and only two kinds of weights to measure a dose of ...
- 扩展欧几里得(E - The Balance POJ - 2142 )
题目链接:https://cn.vjudge.net/contest/276376#problem/E 题目大意:给你n,m,k,n,m代表当前由于无限个质量为n,m的砝码.然后当前有一个秤,你可以通 ...
- The Balance POJ - 2142
首先,可以知道题目要求解一个\(ax+by=c\)的方程,且\(x+y\)最小. 感性证明: 当\(a>b\)时,\(y\)取最小正整数解,\(b\)减的多,\(a\)增的少,此时\(x+y\) ...
- POJ.2142 The Balance (拓展欧几里得)
POJ.2142 The Balance (拓展欧几里得) 题意分析 现有2种质量为a克与b克的砝码,求最少 分别用多少个(同时总质量也最小)砝码,使得能称出c克的物品. 设两种砝码分别有x个与y个, ...
- POJ 2142 The Balance【扩展欧几里德】
题意:有两种类型的砝码,每种的砝码质量a和b给你,现在要求称出质量为c的物品,要求a的数量x和b的数量y最小,以及x+y的值最小. 用扩展欧几里德求ax+by=c,求出ax+by=1的一组通解,求出当 ...
- poj 2142 The Balance
The Balance http://poj.org/problem?id=2142 Time Limit: 5000MS Memory Limit: 65536K Descripti ...
- POJ 2142 The Balance(exgcd)
嗯... 题目链接:http://poj.org/problem?id=2142 AC代码: #include<cstdio> #include<iostream> using ...
- POJ 2142 The Balance (解不定方程,找最小值)
这题实际解不定方程:ax+by=c只不过题目要求我们解出的x和y 满足|x|+|y|最小,当|x|+|y|相同时,满足|ax|+|by|最小.首先用扩展欧几里德,很容易得出x和y的解.一开始不妨令a& ...
- POJ - 2142 The Balance(扩展欧几里得求解不定方程)
d.用2种砝码,质量分别为a和b,称出质量为d的物品.求所用的砝码总数量最小(x+y最小),并且总质量最小(ax+by最小). s.扩展欧几里得求解不定方程. 设ax+by=d. 题意说不定方程一定有 ...
随机推荐
- ZooKeeper概念与应用
Zookeeper是开源的分布式协调服务,提供了分布式数据一致性的解决方案. Zookeeper 可用作配置中心和分布式锁服务,在 Dubbo.Kafka.Spark等分布式集群上得到广泛应用. ZN ...
- angularjs学习第九天笔记(指令作用域【隔离作用域】研究)
您好,昨天学习了指令作用域为布尔型的情况, 今天主要研究其指针作用域为{}的情况 1.当作用域scope为{}时,子作用域完全创建一个独立的作用域, 此时,子做预约和外部作用域完全不数据交互 但是,在 ...
- c# 封装Dapper操作类
using Dapper; using DapperExtensions; using System.Collections.Generic; using System.Configuration; ...
- [PHP] 数据结构-二叉树的创建PHP实现
1.利用递归的原理,只不过在原来打印结点的地方,改成了生成结点,给结点赋值的操作if(ch=='#'){*T=NULL;}else{malloc();(*T)->data=ch;createFu ...
- Python 实现的 12306抢票脚本
Python12306抢票脚本 本脚本使用一个类来实现所有代码,大体上分为以下几个模块及其步骤:- 初始化对象属性(在抢票前进行的属性初始化,包括初始化浏览器模拟对象,个人信息等).- 建立模拟浏览器 ...
- asynchronous.js
// 异步加载js (function(){ var _asyn_js_data = ['index.js','index1.js','index2.js','index3.js'] for(var ...
- JS之iscroll.js的使用详解
入门 Scroll是一个类,每个需要使用滚动功能的区域均要进行初始化.每个页面上的iScroll实例数目在设备的CPU和内存能承受的范围内是没有限制的. 尽可能保持DOM结构的简洁.iScroll使用 ...
- 【代码笔记】Web-HTML-列表
一,效果图. 二,代码. <!DOCTYPE html> <html> <head> <meta charset="utf-8"> ...
- easyUI combobox combotree 模糊查询,带上下键选择功能,待完善。。。。
/2017年4月9日 11:52:36 /** * combobox和combotree模糊查询 * combotree 结果带两级父节点(手动设置数量) * 键盘上下键选择叶子节点 * 键盘回车键设 ...
- loadrunner 场景设计-目标场景设计
场景设计-目标场景设计 by:授客 QQ:1033553122 A. 概述 Goals Types for Goal-Oriented Scenarios 在以目标为向导的场景中,定义你想实现的测 ...