题目链接:https://vjudge.net/problem

题意:

给各位看一下题意,算法详解看下面大佬博客吧,写的很好。

参考博客:最小k度限制生成树 - chty - 博客园  https://www.cnblogs.com/chty/p/5934669.html

代码:

#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#include<map>
#include<stack>
#include<cmath>
#include<vector>
#include<set>
#include<cstdio>
#include<string>
#include<deque>
using namespace std;
typedef long long LL;
#define eps 1e-8
#define INF 0xffffff
#define maxn 105
map<string,int>mp;
struct node{
    int u,v,w,next;
}edge[maxn*maxn],dp[maxn];
int n,m,k,t,id,cnt;
int sum,md;//边权和,最小的度
int pre[maxn],check[maxn][maxn],dis[maxn][maxn],minn[maxn],temp[maxn];
//集合的祖先,check[i][j]表示在生成树里面i和j是否有边相连,dis[i][j]表示i和j之间的边权
//minn[i]表示以点i为祖先节点的点集里和树根直接相连的最小边权,temp记录这个点的下标
void init(){
    id=;
    sum=md=;
    memset(check,,sizeof(check));
    ;i<maxn;i++){
        ;j<maxn;j++){
            dis[i][j]=INF;
        }
    }
    ;i<maxn;i++)
    pre[i]=i;
}
void read(){
    init();
    cin>>m;
    string u,v;
    int w;
    mp[;
    ;i<=m;i++){
        cin>>u>>v>>w;
        )
        mp[u]=++id;
        )
        mp[v]=++id;
        edge[i].u=mp[u];
        edge[i].v=mp[v];
        edge[i].w=w;
        dis[mp[u]][mp[v]]=dis[mp[v]][mp[u]]=min(dis[mp[u]][mp[v]],w);
    }
    cin>>k;
}
bool cmp(node a,node b){
    return a.w<b.w;
}
int find(int a){
    return pre[a]==a?a:pre[a]=find(pre[a]);
}
void cal_m_tree(){//计算度为m的最小生成树
    sort(edge+,edge++m,cmp);
    ;i<=m;i++){
        int u=edge[i].u;
        int v=edge[i].v;
        int w=edge[i].w;
        ||v==)
        continue;
        int x=find(u);
        int y=find(v);
        if(x!=y){
            pre[x]=y;
            sum+=w;//把边权加上
            check[u][v]=check[v][u]=;//标记链接u,v的边已经走过
        }
    }
    ;i<=id;i++)
    minn[i]=INF;
    ;i<=id;i++){//寻找各个连通块里面和树根直接相连的最小边
        int f=find(i);
        ]!=INF&&minn[f]>dis[i][]){//更新连通快f的值并记录点的下标
            minn[f]=dis[i][];//
            temp[f]=i;
        }
    }
    ;i<=id;i++){
        if(minn[i]!=INF){
            md++;//度增加
            sum+=minn[i];//权值增加
            check[][temp[i]]=check[temp[i]][]=;//标记边
        }
    }
}
void DFS(int u,int fa){//用动态规划来计算从树根到生成树上每一个点的1路径上面的最大边权
//同时记录这条边所连接的两点
    ;i<=id;i++){
        if(i==fa)
        continue;
        ){//动态规划,到点i的最大边权dp[i].w=max{dp[u].w,dis[i][u]}
            ){
                dp[i].w=dis[i][u];
                dp[i].u=u;
                dp[i].v=i;
            }
            else{
                dp[i]=dp[u];
            }
            DFS(i,u);
        }

    }
}
void cal_k_tree(){//计算度为m+1到k的最小生成树,可以直接跳出
    ;i<=k;i++){
        ;j<=id;j++)
        dp[j].w=-INF;
        DFS(,-);
        int ans=INF,u;//ans记录接下来度为i的生成树和之前生成树的权值之差的最小值,如果ans<0,说明还可以
        //使边权变小,否则在度数增加时边权和只会变大,所以可以直接跳出
        ;j<=id;j++){
            ]==&&dis[][j]!=INF){
                ][j]-dp[j].w){
                    ans=dis[][j]-dp[j].w;
                    u=j;
                }
            }
        }
        )//无法增广,直接跳出
        break;
        int a=dp[u].u;
        int b=dp[u].v;
        check[a][b]=check[b][a]=;//去掉一条边
        check[][u]=check[u][]=;//增加一条边
        sum+=ans;//边权减少
    }
}
int main()
{
    read();
    cal_m_tree();
    cal_k_tree();
    printf("Total miles driven: %d\n",sum);
    ;
}

poj 1639 最小k度限制生成树的更多相关文章

  1. 【POJ 1639】 Picnic Planning (最小k度限制生成树)

    [题意] 有n个巨人要去Park聚会.巨人A和先到巨人B那里去,然后和巨人B一起去Park.B君是个土豪,他家的停车场很大,可以停很多车,但是Park的停车场是比较小.只能停k辆车.现在问你在这个限制 ...

  2. 最小k度限制生成树

    [题目描述] 给你一个图,n个点,m条边,求一颗生成树满足如下条件: (1)结点1的度不超过k. (2)在(1)条件下所求生成树最小. [算法引入] 最小k度限制生成树,就是指有特殊的某一点的度不能超 ...

  3. poj1639 Picnic Planning,K度限制生成树

    题意: 矮人虽小却喜欢乘坐巨大的轿车,车大到能够装下不管多少矮人.某天,N(N≤20)个矮人打算到野外聚餐.为了集中到聚餐地点,矮人A 要么开车到矮人B 家中,留下自己的轿车在矮人B 家,然后乘坐B ...

  4. poj 1639 Picnic Planning 度限制mst

    https://vjudge.net/problem/POJ-1639 题意: 有一群人,他们要去某一个地方,每个车可以装无数个人,给出了n条路,包含的信息有路连接的地方,以及路的长度,路是双向的,但 ...

  5. 最小k度最小生成树模板

    代码是抄的 题解是瞄的 可我想学习的心是真的嘤嘤嘤 然而 还是上传一份ioi大神的论文吧 链接:https://pan.baidu.com/s/1neIW9QeZEa0hXsUqJTjmeQ 密码:b ...

  6. Picnic Planning POJ - 1639(最小k度生成树)

    The Contortion Brothers are a famous set of circus clowns, known worldwide for their incredible abil ...

  7. K度限制MST poj 1639

    /* k度限制MST:有一个点的度<=k的MST poj 1639 要求1号点的度不超过k 求MST 我们先把1号点扔掉 跑MST 假设有sum个连通分支 然后把这sum个分支连到1上 就得到了 ...

  8. POJ 1639 Picnic Planning:最小度限制生成树

    题目链接:http://poj.org/problem?id=1639 题意: 给你一个无向图,n个节点,m条边,每条边有边权. 让你求一棵最小生成树,同时保证1号节点的度数<=k. 题解: 最 ...

  9. HDU 4862 Jump(最小K路径覆盖)

    输入一个n×m网格图,每个结点的值为0-9,可以从任意点出发不超过k次,走完每个点且仅访问每个结点一次,问最终的能量最大值.不可全部走完的情况输出-1. 初始能量为0. 而结点(x,y)可以跳跃到结点 ...

随机推荐

  1. 基于tensorflow的简单线性回归模型

    #!/usr/local/bin/python3 ##ljj [1] ##linear regression model import tensorflow as tf import matplotl ...

  2. linux下insmod模块出现“Invalid parameters"

    在编译一个模块时,会出现WARNING:"函数名" undefined!,这 说明该模块所依赖的模块还没有加载进内核,需要先加载所依赖的模块. 当加载依赖模块后,使用insmod会 ...

  3. oracle-pl/sql之三

    集合与记录 set serveroutput on create or replace package my_types authid definer is type my_rec is record ...

  4. yuan先生博客链接

    Yuan先生的博客网址   1 Web应用  https://www.cnblogs.com/yuanchenqi/articles/8869302.html 2 http协议 https://www ...

  5. 第十二章 NIO

    12.NIO 12.1 Java NIO 概述 1课时 12.2 Java NIO.2 之Path.Paths 与 Files 的使用 1课时 12.3 自动资源管理 1课时 12.4 缓冲区(Buf ...

  6. c++ CreateProcess调用dos命令

    // test.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <windows.h> #include &l ...

  7. Lock和synchronized的区别和使用

    Java并发编程:Lock 今天看了并发实践这本书的ReentantLock这章,感觉对ReentantLock还是不够熟悉,有许多疑问,所有在网上找了很多文章看了一下,总体说的不够详细,重点和焦点问 ...

  8. VRay材质练习(一):水、玻璃、牛奶

    软件环境 a) 3ds max 2014b) V-Ray 3.60.03 渲染效果图集 玻璃杯 玻璃杯+水 玻璃杯+牛奶 材质详细参数 一.玻璃材质 Diffuse (0,0,0), Roughnes ...

  9. [sql]sql函数coalesce返回第一个非空的值

    下面来看几个比较有用的例子: 首先,从MSDN上看看这个函数的使用方法,coalesce函数(下面简称函数),返回一个参数中非空的值.如: SELECT  COALESCE(NULL, NULL, G ...

  10. SQL Server 2012无法连接到WMI提供程序

    这篇文章主要介绍了SQL Server 2012无法连接到WMI提供程序(Cannot connect to WMI provider)解决方案,需要的朋友可以参考下 今天一位同事在启动自己工作机的S ...