In the 1960s, the legendary Stanford artificial intelligence pioneer, John McCarthy, famously gave a graduate student the job of “solving” computer vision as a summer project. It has occupied an entire community of academic researchers for the past 40 years. And, in many ways, the first real breakthroughs have only come in the last decade or so, with the Kinect being one of the crown jewels of these recent developments.

One major product of the last 40 years of computer vision research is an open source library called OpenCV (http://opencv.willowgarage.com).

And, lucky for us, there’s a great library that makes it really easy to use OpenCV with Processing: OpenCV for Processing http://ubaa.net/shared/processing/opencv/). 

The documentation for that library will get you started, and O’Reilly’s book on the topic is the definitive reference: Learning OpenCV by Gary Bradski and Adrian Kaehler (http://shop.oreilly.com/product/9780596516130.do).

OpenCV’s tools are designed to process individual images. While we can use them to analyze recorded footage or live video, very few of them actually account for the movement of objects over time. In the last decade or so,  though, researchers have developed new techniques that use the time dimension of oving images to extract additional information. This has led to a number of breakthrough techniques including camera tracking, panorama stitching, and 3D scene reconstruction. All of these applications are based on the fundamental idea called “feature detection.” The software starts with a single still frame. It detects small pieces of this frame that are particularly recognizable, called “features.” Then, when examining subsequent frames, the software looks for the same features in adjacent

parts of the image to see if they’ve moved. If these features correspond to parts of the world that are themselves fixed (for example, the corner of a windowsill or the edge of fence post), then the movement of the features tells you about the movement of the camera itself. If you track enough of these features, you can combine the multiple frames into a single panorama, calculate the movement of the camera, or if your camera is a depth camera, build a full 3D reconstruction of the entire scene or room.

If you want to learn more about feature tracking and the other advanced techniques that have arisen in recent computer vision research, I highly recommend Computer Vision: Algorithms and Applications by Richard Szeliski of Microsoft Research (http://szeliski.org/Book). It presents a rigorous approach to the contemporary state of the art. The book arose from Szeliski’s teaching work at the University of Washington computer science department and so definitely has some math in it. However, if you’re excited about the field, and you go slowly and use the Internet to fill in the gaps in your background, there’s no better way to really dive deeply into the field.

Computer Vision: OpenCV, Feature Tracking, and Beyond--From <<Make Things See>> by Greg的更多相关文章

  1. 关于《master opencv with practical computer vision projects》的源代码

    很多读者都在向我要<master opencv with practical computer vision projects>的源代码,现向读者公布,具体源代码地址如下: https:/ ...

  2. Computer Vision Algorithm Implementations

    Participate in Reproducible Research General Image Processing OpenCV (C/C++ code, BSD lic) Image man ...

  3. Computer Vision Resources

    Computer Vision Resources Softwares Topic Resources References Feature Extraction SIFT [1] [Demo pro ...

  4. Computer Vision Tutorials from Conferences (3) -- CVPR

    CVPR 2013 (http://www.pamitc.org/cvpr13/tutorials.php) Foundations of Spatial SpectroscopyJames Cogg ...

  5. code and dataset resources of computer vision

    From:http://rogerioferis.com/VisualRecognitionAndSearch2014/Resources.html Source Code Non-exhaustiv ...

  6. paper 156:专家主页汇总-计算机视觉-computer vision

    持续更新ing~ all *.files come from the author:http://www.cnblogs.com/findumars/p/5009003.html 1 牛人Homepa ...

  7. Computer Vision Tutorials from Conferences (2) -- ECCV

    ECCV 2012 (http://eccv2012.unifi.it/program/tutorials/) Vision Applications on Mobile using OpenCVGa ...

  8. [转载]Three Trending Computer Vision Research Areas, 从CVPR看接下来几年的CV的发展趋势

    As I walked through the large poster-filled hall at CVPR 2013, I asked myself, “Quo vadis Computer V ...

  9. Computer Vision 学习 -- 图像存储格式

    本文把自己理解的图像存储格式总结一下. 计算机中的数据,都是二进制的,所以图片也不例外. 这是opencv文档的描述,具体在代码里面,使用矩阵来进行存储. 类似下图是(BGR格式): 图片的最小单位是 ...

随机推荐

  1. 理解CSS相对定位和固定定位

    × 目录 [1]相对定位 [2]固定定位 前面的话 一般地,说起定位元素是指position不为static的元素,包括relative.absolute和fixed.前面已经详细介绍过absolut ...

  2. POJ3422 Kaka's Matrix Travels[费用流]

    Kaka's Matrix Travels Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9522   Accepted:  ...

  3. thinkphp

    U方法: 模板导入后,先在浏览器执行index.php文件,当出现下图时,框架中的内容才可以出现. 增加admin后台文件夹: 连接数据库:可以使用pdo的方式连接

  4. Linux系统下的ssh使用(依据个人经验总结)

    对于linux运维工作者而言,使用ssh远程远程服务器是再熟悉不过的了!对于ssh的一些严格设置也关系到服务器的安全维护,今天在此,就本人工作中使用ssh的经验而言,做一些总结记录来下. (1)ssh ...

  5. jQuery ScrollPagination修改之后

    jQuery ScrollPagination修改之后代码 /* ** Anderson Ferminiano ** contato@andersonferminiano.com -- feel fr ...

  6. C#汉字转拼音(npinyin)将中文转换成拼音全文或首字母

    汉字转拼音貌似一直是C#开发的一个难题,无论什么方案都有一定的bug,之前使用了两种方案. 1.Chinese2Spell.cs 一些不能识别的汉字全部转为Z 2.Microsoft Visual S ...

  7. CSS水平居中/垂直居中的N个方法

    我看最近微博流行CSS居中技术,老外码农争相写相关的文章,一篇赛一篇的长啊,我把几篇归纳总结了一下,算是笔记. 孔乙己曾说:"茴香豆的回字有四种写法",万一哪天有个面试官问你:&q ...

  8. .net ServiceStack.Redis 性能调优

    最近在debug生产环境的问题时,发现了ServiceStack 4.0.60版本RedisClient存在一个非常严重的性能问题.在高并发下,PooledRedisClientManager.Get ...

  9. 使用java库中的对称加密算法

    对称加密算法是说加密方和解密方使用相同的密钥.常见的对称加密算法包括4个,DES,DESede(3DES),AES,PBE. 本文讨论的内容是加密算法,不是Message Digest,不是编码.下面 ...

  10. 百度API

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...