In the 1960s, the legendary Stanford artificial intelligence pioneer, John McCarthy, famously gave a graduate student the job of “solving” computer vision as a summer project. It has occupied an entire community of academic researchers for the past 40 years. And, in many ways, the first real breakthroughs have only come in the last decade or so, with the Kinect being one of the crown jewels of these recent developments.

One major product of the last 40 years of computer vision research is an open source library called OpenCV (http://opencv.willowgarage.com).

And, lucky for us, there’s a great library that makes it really easy to use OpenCV with Processing: OpenCV for Processing http://ubaa.net/shared/processing/opencv/). 

The documentation for that library will get you started, and O’Reilly’s book on the topic is the definitive reference: Learning OpenCV by Gary Bradski and Adrian Kaehler (http://shop.oreilly.com/product/9780596516130.do).

OpenCV’s tools are designed to process individual images. While we can use them to analyze recorded footage or live video, very few of them actually account for the movement of objects over time. In the last decade or so,  though, researchers have developed new techniques that use the time dimension of oving images to extract additional information. This has led to a number of breakthrough techniques including camera tracking, panorama stitching, and 3D scene reconstruction. All of these applications are based on the fundamental idea called “feature detection.” The software starts with a single still frame. It detects small pieces of this frame that are particularly recognizable, called “features.” Then, when examining subsequent frames, the software looks for the same features in adjacent

parts of the image to see if they’ve moved. If these features correspond to parts of the world that are themselves fixed (for example, the corner of a windowsill or the edge of fence post), then the movement of the features tells you about the movement of the camera itself. If you track enough of these features, you can combine the multiple frames into a single panorama, calculate the movement of the camera, or if your camera is a depth camera, build a full 3D reconstruction of the entire scene or room.

If you want to learn more about feature tracking and the other advanced techniques that have arisen in recent computer vision research, I highly recommend Computer Vision: Algorithms and Applications by Richard Szeliski of Microsoft Research (http://szeliski.org/Book). It presents a rigorous approach to the contemporary state of the art. The book arose from Szeliski’s teaching work at the University of Washington computer science department and so definitely has some math in it. However, if you’re excited about the field, and you go slowly and use the Internet to fill in the gaps in your background, there’s no better way to really dive deeply into the field.

Computer Vision: OpenCV, Feature Tracking, and Beyond--From <<Make Things See>> by Greg的更多相关文章

  1. 关于《master opencv with practical computer vision projects》的源代码

    很多读者都在向我要<master opencv with practical computer vision projects>的源代码,现向读者公布,具体源代码地址如下: https:/ ...

  2. Computer Vision Algorithm Implementations

    Participate in Reproducible Research General Image Processing OpenCV (C/C++ code, BSD lic) Image man ...

  3. Computer Vision Resources

    Computer Vision Resources Softwares Topic Resources References Feature Extraction SIFT [1] [Demo pro ...

  4. Computer Vision Tutorials from Conferences (3) -- CVPR

    CVPR 2013 (http://www.pamitc.org/cvpr13/tutorials.php) Foundations of Spatial SpectroscopyJames Cogg ...

  5. code and dataset resources of computer vision

    From:http://rogerioferis.com/VisualRecognitionAndSearch2014/Resources.html Source Code Non-exhaustiv ...

  6. paper 156:专家主页汇总-计算机视觉-computer vision

    持续更新ing~ all *.files come from the author:http://www.cnblogs.com/findumars/p/5009003.html 1 牛人Homepa ...

  7. Computer Vision Tutorials from Conferences (2) -- ECCV

    ECCV 2012 (http://eccv2012.unifi.it/program/tutorials/) Vision Applications on Mobile using OpenCVGa ...

  8. [转载]Three Trending Computer Vision Research Areas, 从CVPR看接下来几年的CV的发展趋势

    As I walked through the large poster-filled hall at CVPR 2013, I asked myself, “Quo vadis Computer V ...

  9. Computer Vision 学习 -- 图像存储格式

    本文把自己理解的图像存储格式总结一下. 计算机中的数据,都是二进制的,所以图片也不例外. 这是opencv文档的描述,具体在代码里面,使用矩阵来进行存储. 类似下图是(BGR格式): 图片的最小单位是 ...

随机推荐

  1. 【2016-10-17】【坚持学习】【Day8】【工厂方法模式】

    工厂方法模式又叫工厂模式,虚拟构造器模式 定义: 工厂父类负责定义创建产品对象的公共接口,而工厂子类则负责生成具体的产品对象目的是将产品类的实例化操作延迟到工厂子类中完成,即通过工厂子类来确定究竟应该 ...

  2. 【读书笔记《Bootstrap 实战》】3.优化站点资源、完成响应式图片、让传送带支持手势

    A.优化站点资源 速度很重要.用户很关心.我们的站点必须加载够快,否则用户就会走人.SEO 也很重要.我们的站点必须加载够快,否者搜索排名就会下降. 明白了这样,我们就来清点一下 [Bootstrap ...

  3. [转载]我的Java后端书架 (2016年暖冬4.0版)

      [转载]我的Java后端书架 (2016年暖冬4.0版) ps:最近正在初学Java,有一些其他语言的底子,但是还是要好好看书,好好练习,网上找了好久,都没有这份书单来的实用,特意转载过来,方便以 ...

  4. [No000089]String的(补空位)左对齐,(补空位)右对齐

    using System; namespace Chinese中文排序Sort { internal class Program { /// <summary> /// 取子字符串 /// ...

  5. 去除多余的cell 和最后一行cell显示顶头底线

    去除多余cell YourTableview.tableFooterView = [[UIView alloc] initWithFrame:CGRectZero]; 最后一行cell底线顶头显示 s ...

  6. BOM浏览器对象模型

    访问和操作浏览器窗口的模型称为浏览器对象模型BOM(Browser Object Model). BOM整体对象图. 核心是window对象: 以下有特殊双重身份: window对象既是ECMAScr ...

  7. 了解 JS 原型

    原型概念 当创建了一个函数时,就会根据一组特定的规则为该函数创建一个 prototype 属性,这个属性指向函数的原型对象.在默认情况下,所有原型对象都会自动获得一个constructor 的属性 这 ...

  8. .Net下几个服务框架介绍

    简介 在公司的服务多了以后,为了调用上的方便,同时为了以后的服务治理,一般都会使用一些服务框架,这里主要介绍我知道的几个服务框架,简析一下这些服务框架的基本概念. 可投入生产环境使用的 以下两个服务框 ...

  9. c语言之【#ifdef】

    电脑程序语句,我们可以用它区隔一些与特定头文件.程序库和其他文件版本有关的代码. 1 2 3 #ifdef 语句1     // 程序2 #endif 可翻译为:如果宏定义了语句1则程序2. 作用:我 ...

  10. kuangbin专题总结一 简单搜索

    A - 棋盘问题:在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别.要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有 ...