Keras之序贯(Sequential)模型
序贯模型(Sequential)
序贯模型是多个网络层的线性堆叠。
可以通过向Sequential模型传递一个layer的list来构造该模型:
from Keras.models import Sequential
from Keras.layers import Dense,Activation model = Sequential([Dense(32,units=784),Activation('relu'),Dense(10),Activation('softmax'),])
也可以通过.add()方法一个个的将layer加入到模型中:
model = Sequential()
model.add(Dense(32,input_shape=(784,)))
model.add(Activation('relu'))
指定输入数据的Shape
模型需要知道输入数据的shape,因此,Sequential的第一层需要接受一个关于输入数据shape的参数,后面的各个层则可以自动推导出中间数据的shape,因此不需要为每个层都指定这个参数。有几种方法来为第一层指定输入数据的shape,因此不需要为每个层都指定这个参数。有几种方法来为第一层指定输入数据的shape
- 传递一个input_shape的关键字给第一层,input_shape是一个tuple类型的数据,其中也可以填入None,如果填入None则表示此位置可能是任何正整数。数据的batch大小不应该包含在其中。
- 有些2D层,如Dense,支持通过指定其输入维度input_dim来隐含的指定指定输入数据shape。一些3D的时域层支持通过参数input_dim和input_length来指定输入shape
- 如果你需要为输入指定一个固定大小的batch_size(常用于stateful RNN网络),可以传递batch_size参数到一个层中,例如你想指定输入张量的batch大小是32,数据shape是(6,8),则你需要传递batch_size=32和input_shape()=(6,8)。
model = Sequential()
model.add(Dense(32,input_dim(784))) model = Sequential()
model.add(Dense(32,input_shape=784))
编译
在训练模型之前,我们需要通过compile来对学习过程进行配置。compile接收三个参数:
1.优化器optimizer:该参数可指定为已预定义的优化器名称,如rmsprop、adagrad,或一个Optimizer类的对象
2.损失函数loss:该参数为模型试图最小化的目标函数,它可为预定义的损失函数名,如categorical_crossentropy、mse,也可以为一个损失函数。
3.指定列表metrics:对分类问题,我们一般将列表设置为metrics=[‘accuracy’].指标可以是一个预定义指标的名字,也可以是一个用户定制的函数。指标函数应该返回单个张量,或一个完成metric_name -> metric_value映射的字典
#For a multi-class classification problem
model.compile(optimizer='rmsprop',loss='categorical_crossentropy',metrics=['accuracy'
#For a binary classification problem
model.compile(optimizer='rmsprop',loss='binary_crossentropy',metrics=['accuracy'])
#For a mean squared error regression problem
model.compile(optimizer='rmsprop',loss='mse')
#For custom metrics
import keras.backed as k def men_pred(y_true,y_pred):
return K.mean(y_pred) model.compile(optimizer='rmsprop',loss='binary_crossentropy',metrics=['accuracy',mean_pred])
训练
Keras以Numpy数组作为输入数据和标签的数据类型。训练模型一般使用fit函数。下面给出一些例子:
#For a single-input model with 2 class (binary classification)
model = Sequential()
model.add(Dense(32,activation='relu', input_dim=100))
model.add(Dense(1,activation='sigmoid'))
model.compile(optimizer='rmsprop',loss='binary_crossentropy',metrics=['accuracy']) #Generate dummy data
import numppy as np
data = np.random.random((100,100))
labels = np.random.randint(2,size=(1000,1)) #Train the model,iterating on the data in batches of 32 samples
model.fit(data,labels,epochs=10,batch_size=32)
#For a sinale-input model with 10 class (categorical classfication):
model = Sequential()
model.add(Dense(32,activation='relu',input_dim=100))
model.add(Dense(10,activation='softmax'))
model.compile(optimizer='rmsprop',loss='categorical_crossentropy',metrics=['accuracy']) #Generate dummy data
import numpy as np
data = np.random.random((1000,100))
labels = np.random.randint(10,size=(1000,1)) #Convert Labels to categorical one-hot encoding
one_hot_labels = keras.utils.to_categorical(labels,num_classes=10) #Train the model,interating on the data in batches of 32 samples
model.fit(data,one_hot_labels,epochs=10,batch_size=32)
Keras之序贯(Sequential)模型的更多相关文章
- Python机器学习笔记:深入理解Keras中序贯模型和函数模型
先从sklearn说起吧,如果学习了sklearn的话,那么学习Keras相对来说比较容易.为什么这样说呢? 我们首先比较一下sklearn的机器学习大致使用流程和Keras的大致使用流程: skl ...
- keras模块学习之Sequential模型学习笔记
本笔记由博客园-圆柱模板 博主整理笔记发布,转载需注明,谢谢合作! Sequential是多个网络层的线性堆叠 可以通过向Sequential模型传递一个layer的list来构造该模型: from ...
- Keras官方中文文档:序贯模型
快速开始序贯(Sequential)模型 序贯模型是多个网络层的线性堆叠,也就是"一条路走到黑". 可以通过向Sequential模型传递一个layer的list来构造该模型: f ...
- Keras官方中文文档:序贯模型API
Sequential模型接口 如果刚开始学习Sequential模型,请首先移步这里阅读文档,本节内容是Sequential的API和参数介绍. 常用Sequential属性 model.layers ...
- Python机器学习笔记:深入学习Keras中Sequential模型及方法
Sequential 序贯模型 序贯模型是函数式模型的简略版,为最简单的线性.从头到尾的结构顺序,不分叉,是多个网络层的线性堆叠. Keras实现了很多层,包括core核心层,Convolution卷 ...
- 【Keras学习】Sequential模型
序贯(Sequential)模型 序贯模型是多个网络层的线性堆叠,也就是“一条路走到黑”. 可以通过向Sequential模型传递一个layer的list来构造该模型: from keras.mode ...
- Keras(一)Sequential与Model模型、Keras基本结构功能
keras介绍与基本的模型保存 思维导图 1.keras网络结构 2.keras网络配置 3.keras预处理功能 模型的节点信息提取 config = model.get_config() 把mod ...
- Keras Model Sequential模型接口
Sequential 模型 API 在阅读这片文档前,请先阅读 Keras Sequential 模型指引. Sequential 模型方法 compile compile(optimizer, lo ...
- mnist手写数字识别——深度学习入门项目(tensorflow+keras+Sequential模型)
前言 今天记录一下深度学习的另外一个入门项目——<mnist数据集手写数字识别>,这是一个入门必备的学习案例,主要使用了tensorflow下的keras网络结构的Sequential模型 ...
随机推荐
- php socket 模型及效率问题
// 创建套接字 socket_create(); // 绑定 socket_bind(); // 监听 socket_listen(); // 主体, 死循环 while(true){ // sel ...
- 解决错误: ios property has a previous declaration
今天维护一个项目的时候,我新添加了一个库,运行的时候报错了: ios property has a previous declaration 上网查了一下没有找到思路,不过根据提示自己试了一下,原来这 ...
- lua工具库penlight--06数据(二)
词法扫描 虽然 Lua 的字符串模式匹配是非常强大,但需要更强大的东西.pl.lexer.scan可以提供标记字符串,按标记机分类数字.字符串等. > lua -lpl Lua 5.1.4 C ...
- django 模板报错
"Requested setting TEMPLATE_DEBUG, but settings are not configured. You must either define the ...
- javascript之查找数组元素
基本思想: 比对数组中元素,相等者输出元素在数组的下标,否则就输出没找到! 代码如下: function Orderseach(array,findVal){ var temp = false; // ...
- CSS3自定义滚动条样式 -webkit-scrollbar (一)
Webkit支持拥有overflow属性的区域,列表框,下拉菜单,textarea的滚动条自定义样式.当然,兼容所有浏览器的滚动条样式目前是不存在的. 滚动条的组成: ::-webkit-scroll ...
- Sql server 打不开了,无法识别的配置节 system.serviceModel 解决方案
异常描述: System.Configuration.ConfigurationErrorsException: 配置系统未能初始化 ---> System.Configuration.Conf ...
- asp.net知识汇总-页面跳转Server.Transfer和Response.Redirect
1. Server.Transfer 服务器端跳转 webform1.aspx跳转到webform2.aspx页面 webform1.aspx代码如下: protected void Page_Loa ...
- 第0步:OracleRAC软件准备
表1 软件准备列表 安装包属性 文件信息 Oracle 11.2.0.4 p13390677_112040_Linux-x86-64_1of7.zip p13390677_112040_Lin ...
- html 复选框(checkbox)和单选框(radio)与文字水平垂直居中对齐
对 input与label同时设置CSS input,label{ vertical-align:middle; }